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Flows of cells growing as a quasimonolayer in a confined space can exhibit streaming, with narrow

streams of fast-moving cells flowing around clusters of slowly moving cells. We observed and analyzed

this phenomenon experimentally for E. coli bacteria proliferating in a microfluidic cell trap using time-

lapse microscopy. We also performed continuum modeling and discrete-element simulations to elucidate

the mechanism behind the streaming instability. Our analysis demonstrates that streaming can be

explained by the interplay between the slow adaptation of a cell to its local microenvironment and its

mobility due to changes of cell-substrate contact forces.
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Microorganisms employ a wide range of cooperative
strategies for responding to adverse environmental condi-
tions [1–5]. In many cases, these strategies lead to intricate
patterns and complex shapes in bacterial colonies [6–8].
While such patterning is usually associated with long-
range cell signaling and motility [9], microorganisms are
often found in dense communities where direct cellular
contact plays an important role in the dynamics of colony
formation [10,11]. Moreover, bacteria often actively seek
to aggregate in small cavities and crevices, which helps
them to cope with environmental conditions [12,13]. In our
recent work [14] we studied orientational ordering of
bacteria caused by their growth and ensuing hydrodynamic
flow. Here, we use microfluidic traps to characterize a
general streaming instability occurring in a confined col-
ony of nonmotile bacteria. In order to investigate the
mechanism driving the streaming instability, we develop
a continuum model and complementary discrete-element
simulations with cells modeled as growing and dividing
soft spherocylinders which adapt their size and mobility to
local microenvironments.

In order to study bacterial colony growth in a confined
environment, we constructed microfluidic devices featur-
ing two types of traps (open and side) capable of sustaining
a two-dimensional colony of nonmotile bacteria E. coli
over many generations. Open traps are !1 !m-deep rect-
angular regions of different horizontal dimensions (up to
200" 2000 !m2) embedded in the middle of the
6–10 !m-deep main channel [see Fig. 1(a)]. The external
fluid flow through the main channel (!50 !m= sec ) deliv-
ers nutrients to the open boundaries of the trap, allowing
for their diffusion into the interior of the trap. The fluid
flow in the channel also removes metabolic waste and cells
ejected from the trap. Side traps have similar dimensions
but are embedded in the side walls of the main channel and
have only one open boundary [Fig. 1(b)].

In the beginning of each experiment we placed a few
bacteria inside the trap and waited several hours (mean cell

division time was about 20 min) until the colony grew and
filled the trap region completely. The subsequent growth
was balanced by a significant expansion flow towards the
open boundaries of the trap. We found that the expansion
flow of growing cells inside the traps was surprisingly

FIG. 1 (color online). (a),(b) Schematic views of the micro-
fluidic devices with open and side traps. (c) Magnitude of the
vertical component of cell velocity overlaid on a phase contrast
image of the trap at time 210 min of the run shown in movie S1;
(d) Space-time plot of the cells’ exit velocity component aver-
aged over the lower 20 !m of the trap in (c).
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nonuniform. This behavior was quantitatively analyzed by
particle image velocimetry software MATPIV [15]. Fig-
ure 1(c) illustrates that cells escape from an open trap
into the main channel in narrow rapidly moving streams
that bypass regions of almost stagnant cells localized near
the open boundaries (see also movie S1 [16]). The cell
streams are dynamic [see Fig. 1(d)]; the number and posi-
tions of streams fluctuate over the duration of a typical
experiment. Similar results were obtained in side-trap ex-
periments; see [16]. More detailed inspection of the cells
inside the traps revealed that stagnant cells are generally
thicker than rapidly moving cells comprising the streams.
Furthermore, the cell size is strongly dependent on its
distance from the open boundary of the trap: in the trap
interior the cell diameter is only half of that near the open
boundaries (where the diameter is about 1 !m) [16]. There
may be multiple factors which can cause this dependence,
from nutrient depletion to waste accumulation and quorum
signaling. Our estimate [16] gives the characteristic pre-
ferred carbon source depletion distance of the order of
25 !m from the open boundary, which is consistent with
the observed transition to smaller cell sizes.

The instability in cellular streams can be understood in
terms of the interplay between the cell size and its me-
chanical properties. Since the trap height is nearly equal to
the cell diameter, the mechanical interaction between the
cells and the top and bottom walls of the trap affects their
mobility. Under the same pressure gradient, smaller cells
experience less drag and move faster, while larger cells
experience higher drag and move slower. As cells move
towards the open boundary, they grow larger in diameter,
which leads to their reduced mobility. The streaming in-
stability occurs when the growth rate of the diameter is
comparable to the time a cell spends moving from the back
of the trap to the open boundary. Under this condition,
slowly moving cells grow larger and can effectively stop
moving and form obstacles that permit streaming patterns
to emerge for smaller, fast-moving cells.

We developed a continuum model of the colony dynam-
ics which generalizes equations of two-dimensional in-
compressible fluid dynamics to include the effects of cell
growth and drag force, the latter arising from the interac-
tion of the cells with the floor and ceiling of the trap. We
did not include the effects of cell shape and position-
dependent growth rate in the model since they do not
appear to be essential for the basic streaming mechanism.
The incompressible ‘‘cell fluid’’ of constant density (scaled

to 1) is described by the following equations (D=Dt #
@=@tþ ~v % ~r):

D ~v

Dt
¼ ' ~rp' gðfÞ ~vþ!r2 ~v (1)

Df

Dt
¼ "ðcð ~rÞ ' fÞ (2)

~r % ~v ¼ # (3)

with ~v the cell velocity field, p the pressure field, f a field

characterizing cell diameter, gðfÞ an f-dependent coeffi-
cient of (top and bottom) drag for cells moving in the
shallow trap, " the rate of f adaptation to the local chemi-
cal environment, ! a coefficient of effective viscosity for
cell flow, and # the volumetric growth rate of the ‘‘cell
fluid.’’ According to Eq. (2), cell ‘‘diameter’’ f of a cell at a
fixed position ~r reaches an equilibrium value cð~rÞ that is
chosen to be highest near an open boundary of the cell trap.
Thus, stagnant cells become largest near the trap opening.
The somewhat unusual form of the incompressibility equa-
tion (3) is due to the presence of a distributed mass source
due to exponential cell growth. This equation can be used
to find the hydrodynamic pressure p. We impose the
boundary condition of a constant pressure at the open sides
of the trap. The drag coefficient gðfÞ is assumed to non-
linearly increase with f, due to the appearance of strong
contact friction between the cell and the trap for large cells.
In all results given below we have used gðfÞ ¼ f2,
although the specific form of the nonlinearity is not essen-
tial. We also neglect cell inertia and employ the over-
damped limit for the momentum equation (D ~v=Dt * 0).
The analysis simplifies considerably in the case of

narrow-channel flow (small x dimension), where Eqs. (1)–
(3) in the overdamped limit can be reduced to the one-
dimensional system

@p

@z
¼ 'gðfÞvþ!

@2v

@z2
; (4)

@f

@t
þ v

@f

@z
¼ "ðcðzÞ ' fÞ; (5)

@v

@z
¼ #: (6)

Equation (6) stipulates a linear velocity profile vðz; tÞ ¼
#zþ v0ðtÞ. In a side trap with the solid wall at z ¼ 0 and
the open boundary at z ¼ Lz, v0ðtÞ ¼ 0, and the velocity,
pressure, and f fields are asymptotically stationary and
unique. The open-trap case (open boundaries at z ¼
+Lz) is more interesting, since v0ðtÞ can be a function of
time. Substituting the expression for vðz; tÞ in Eq. (4)
and integrating the latter from 'Lz to Lz with the
boundary condition pðLzÞ ¼ pð'LzÞ we obtain v0ðtÞ ¼
'#G1½f-=G0½f-, where Gs½f- ¼

RLz

'Lz
dzzsgðfðz; tÞÞ.

This formula defines the flow velocity for a known field
fðz; tÞ. The remaining Eq. (5) can be solved through a
polynomial mode expansion fðz; tÞ ¼ P1

n¼0 fnðtÞzn,
cðzÞ ¼ P1

n¼0 cnz
n and truncation to a finite-dimensional

set of nonlinear ODEs (see [16] for the straightforward
derivation). The numerical bifurcation analysis of the sys-
tem using MATCONT [17] reveals that the narrow-channel
flow in an open trap exhibits a variety of dynamic regimes,
including symmetric flow (v0 ¼ 0), asymmetric flow
(v0 ¼ const ! 0), and oscillatory flow [v0ðtÞ is periodic],
depending on parameters; see Fig. 2(a) and 2(b). We in-
deed observed nonstationary asymmetric flow regimes in
discrete-element simulations and the open-trap experi-
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ments [16]. It is also interesting to note the possibility of
bistable regimes (e.g., bistability between oscillations and
uniform flow).

The onset of cell streaming in the full two-dimensional
model can be determined by the linear stability analysis of
the transversally uniform flow with respect to small peri-
odic in x perturbations. We consider here the case of the
stationary zero-order solution, vð0ÞðzÞ, pð0ÞðzÞ and fð0ÞðzÞ.
In the first order, these solutions are perturbed by the
functions f~vz; ~vx; ~p; ~fg ¼f VðzÞ; iV 0ðzÞ=k; PðzÞ; FðzÞg"
expðikxþ $tÞ (the velocity components ~vx, ~vz satisfy
the incompressibility condition automatically). Sub-
stituting this ansatz in Eqs. (1)–(3) we arrive at a 1D
eigenvalue problem for $, VðzÞ, PðzÞ, and FðzÞ with cor-
responding boundary conditions for side or open-trap
cases. In case of the side trap, the boundary conditions
are Vð0Þ ¼ Fð0Þ ¼ PðLzÞ ¼ 0, and for a symmetric flow in
an open trap, the b.c. are Pð+LzÞ ¼ Fð0Þ ¼ 0. Ad-
ditionally, we assume a continuous tangential stress con-
dition (slip) at both the inner wall and the outer free
boundary, k2VðzÞ þ V 00ðzÞ ¼ 0, z ¼ 0, L. This problem
can be solved numerically by a shooting-matching method.
The streaming instability first occurs near the wave number
k * 2L'1

z ; see Figs. 2(c) and 2(d). This instability requires

the presence of a sufficiently steep gradient in the friction
field gðfÞ. Intermediate values for the relaxation rate (i.e.
" * #) also are required for the instability, such that
adaptation to the chemical microenvironment occurs on a
time scale comparable to cell division time. Finally, the
streaming instability was found to be sensitive to the value
of the coefficient of viscosity ! [Fig. 2(c)].
The two-dimensional continuum analysis of streaming

addressed only the linear stability of uniform flow. In
addition, the continuum model does not include granular
effects, including cell shape [18]. We therefore performed
discrete-element simulations (DES) of growing and divid-
ing rodlike cells in a two-dimensional monolayer using a
generalization of the soft-particle algorithm described in
Ref. [14]. We introduced an internal variable f carried with
each ‘‘cell’’ and inherited by its offspring. The variable f
for each cell obeys the equation df=dt ¼ "ðcð ~rÞ ' fÞ
analogous to Eq. (2). Cells grow at a rate proportional to
their length and divide on average at the length ‘div. Escape
of cells from the trap is treated by removing cells when
their centers cross the open boundary of the trap.
Simulations for cells in a side-trap geometry provide an

extension of the linear stability analysis presented above.
In the parameter region corresponding to the linear insta-
bility we have found significant streaming (see Fig. 3 and
[16] movies S6 and S7). Similar to experiment, the struc-
tures in simulations remain dynamic, allowing drifting,
merging, and spontaneous creation of streams. Since in
most simulations traps of moderate horizontal dimensions
(up to 150 cell diameters) were explored, as expected, the
granular effects played a significant role in stabilizing
streaming instability for cells with relatively small aspect
ratios (e.g., ‘div ¼ 3). In particular, we found that the
system could be bistable between uniform flow and stream-
ing pattern [see Fig. 3(b) and 3(c)]. These results demon-
strate that the linear instability of uniform flow gives only a
sufficient condition for streaming.
We also probed the effects of cell orientation on cell

streaming by analyzing different cell aspect ratios. Longer
cells within the streams tend to align their axis along the
flow as expected [14]. This enhanced ordering locally
reduces effective shear viscosity, since aligned long cells
easily slide past each other (cell-cell friction is assumed
small), and this further increases the intensity of streaming
[see Fig. 3(d) and [16] movie S7 for ‘div ¼ 5].
Our theoretical and numerical results indicate that the

streaming instability arises due to the strong dependence of
cell mobility on its size due to drag from top and bottom of
the trap. This implies that the streaming instability should
be sensitive to the depth of the trap. Additional experi-
ments in deeper traps (1:65 !m) indeed demonstrated the
loss of cell streaming [16].
In summary, we have shown that flows of bacteria

growing in confined spaces are prone to a streaming insta-
bility. The mechanism of the streaming instability is re-
lated to the coupling between the cell growth and mobility:
larger cells experience greater drag force when moving
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FIG. 2 (color online). Results of the continuum hydrodynamic
model in the overdamped limit using cðzÞ ¼ Aþ ðz=LzÞ2, Lz ¼
1, # ¼ 1. (a) Three regimes of narrow-channel flows: symmetric
(1), asymmetric (2), and periodic (3) flows; (b) Bifurcation
diagram of the narrow-channel flows in the (A, ") plane.
Symbol S denotes symmetric flow, A, asymmetric, and O,
oscillatory flow regimes, double symbols (A=S, O=S) indicate
domains of bistability according to local bifurcation analysis.
Points 1,2,3 correspond to time series shown in (a).
(c) Streaming instability domain in the parameter plane (A, ")
for different values of viscosity coefficient !. Streaming for a
given ! occurs for A below the corresponding curve;
(d) Velocity field for the eigenfunction near the onset of a
streaming instability, with wave vector k ¼ 2, " ¼ 1, A ¼
0:045, ! ¼ 0:001. Since the flow is inverted for %=4 . x .
3%=4, only half the x period is displayed.

PRL 104, 208101 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending
21 MAY 2010

208101-3



within a confined space. Cell size, in turn, depends on local
chemical environment. In our experiments, cells grow
larger near the edge of the trap where the nutrient concen-
tration is higher and waste concentration is lower. The
longer the cell remains near the edge of the trap, the larger
it becomes and the more difficult it becomes for it to leave
the trap. Smaller cells, which are growing in the bulk of the
colony, are forced to bypass the larger static cells and form
narrow streams. These streams are reminiscent of Saffman-
Taylor viscous fingers at an interface between two fluids
with different viscosities [19,20]. While we observed the
streaming instability in laboratory strains of bacteria grown
in microfluidic environments, we believe that the phe-
nomenon is fairly generic and is likely to occur in dense
colonies in natural habitats, since bacteria often are found
in dense populations in small cavities and crevices where
they from biofilms. Future investigations of streaming in

biofilms may benefit from the inclusion of effects not
included in the present investigation, such as cell-cell and
cell-trap adhesion due to an extracellular polymeric matrix.
More generally, the interplay between physical properties
of cells and their mobility may play an important role in
other examples of morphogenesis, such as invasive tumor
growth [21].
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FIG. 3 (color online). Streaming patterns in a wide side trap:
(a) A snapshot of a cell population from a typical DES simula-
tion of short rods (‘div ¼ 3) at time t ¼ 30 of the simulation
shown in panel (b). Cells are colored according to their values of
f. Panels (b) and (c) show (x, t) diagrams of the z component of
cell velocity averaged over the z axis. Both simulations had the
same parameters and were initiated at t ¼ '15) with a single
cell, but for the simulation but in (b) f was allowed to evolve
freely from the very beginning while in (c) f was fixed at cðzÞ=2
until time t ¼ 5 and then relaxed. (d) Snapshot of the population
of longer rods (‘div ¼ 5). Parameters are Lx ¼ 150, Lz ¼ 20,
# ¼ 0:5, " ¼ 0:5, cðzÞ ¼ 1þ 200ðz=LzÞ4.
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I. EXPERIMENTAL METHODS

Microbial strain and growth conditions

Before each experiment we cultured non-motile strain of bacteria E. coli [1] in

50mL LB (10g/L NaCl) with antibiotics (100 µg/ml ampicillin(Amp) and 50 µg/ml

kanamycin(Kan)) for approximately 2 hours from an overnight culture. Cells reached

an OD600 of 0.05-0.1 and were spun down and concentrated in 5mL of fresh media with

surfactant concentration of 0.075% Tween20 [Sigma-Aldrich, St.Louis,MO] before loading

in a device. During the run cells received the same media(w/ 0.075% Tween20) via

diffusion and advection, and grew exponentially filling the trapping regions in a monolayer.

Microscopy and image analysis

Images were acquired using an epifluorescent inverted microscope (TE2000-U, Nikon

Instruments Inc.). A plexiglass incubation chamber encompassing the entire microscope

was used to maintain the constant ambient temperature 37◦C. Phase contrast images

were taken at 20x or 60x every 1-2 minutes. Stitching of images and autofocusing were

performed by Nikon Elements software. Each image was processed using grayscale

morphology techiques in ImageJ [2] and particle-image velocimetry (MatPIV [3]) was

used to measure coarse-grained velocity profiles.

1



II. SUPPLEMENTARY EXPERIMENTAL RESULTS

In addition to Fig. 1d of the main text that showed a space-time diagram for the average

escape velocity of cells at the bottom edge of the open trap, here we present a similar

plot for the the top part of the open trap, Fig. S1. It demonstrates that the dynamics on

both open ends of the traps are qualitatively similar: cells organize in fast streams and

slow clusters, which shift laterally as the clusters of large stagnant cells change in size and

position.

In order to assess the importance of friction of cells with the wall chambers, we compared

cell flows in trap with heights 1.0µm and 1.65µm. These traps are schematized in Fig. S2

a,b where the semi-closed geometry prevents the flow of media from sweeping cells away,

allowing trap height to be larger than 1.0µm. The spatial distribution of vertical velocities

in the 1.0µm case is shown in Fig. S2c and the corresponding space-time diagram of exit

velocities is shown in Fig. S2 d. One stream is clearly identified at the middle of the trap

with transient shifts in location and magnitude (Supplementary Movie 2). A snapshot of

the cell flow in the ∼1.65µm trap is shown in Fig. S2e and the space-time diagram shown

in Fig. S2f. Here, cells are pushed out in a nearly uniform flow across the entire trap, and

no streaming pattern is observed.

To study the effect of cell size distribution on streaming, we grew a colony of E. coli in

a 300x90x0.95 µm3 open trap, which allows for better distribution of nutrients and more

homogenous cell sizes throughout the trap (Fig. S3, Supplementary Movie 4). Because

the trap is smaller, cells do not have time to grow large enough and form clusters near

the periphery. Thus, cells leave the colony uniformly on both open boundaries of the

trap. Interestingly, the PIV analysis of the experiment shows that the magnitude of

the exit velocity on either side of the trap is anti-correlated (see the space-time plots in

Figs. S3 b and c), which corresponds to the asymmetric regime of cell flow predicted by

the continuum theory (see Sec. IV).
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Fig. S4 illustrates the cell size dependence on the position within the side trap. In Panel

a we show a snapshot of the side trap where the cells in the interior are significantly

smaller than ones near the exit. Panel b shows the average cell area as a function of

distance from the open side of the trap. As can be observed in this plot, cell area changes

by a factor of 2 from the nutrient-rich open edge of the trap to the back wall. The cross

section area of cells was measured by dividing the trap in five horizontal sections centered

at z = 9, 27, 45, 63, and 81 µm and segmenting images of cells with ImageJ.

III. DEPTH OF NUTRIENT DEPLETION IN MICROFLUIDIC TRAPS

Our experimental data on the cell size dependence on the distance from the open bound-

aries (previous Section) suggest that there is variability in the environmental conditions

across the trap. The most obvious candidate for such variability is the media which dif-

fuses into the trap from the open boundary and is consumed by growing cells. Here we

estimate the characteristic depth zd of the region near the open boundaries to which the

nutrient can penetrate before it is being completely consumed by bacteria, and show that

it is in a good agreement with the observed depth of the region in the microfluidic traps

where large, healthy cells can be found. Derivation of this estimate uses a connection

between the distribution of cells in a microfluidic trap and the growth of cells in a batch

culture which has been previously studied in the literature [4].

There are several assumptions used in the analysis, but we do not believe these assump-

tions strongly affect our estimate. We assume that there exists a single preferred nutrient

source (at concentration c which in general is a function of space and time) in the me-

dia (Luria-Bertani broth), and that fresh media contains this nutrient at a concentration

c0. Cells are labeled “healthy” when c > 0 locally, while cells are “stressed” when c ≈ 0

locally. The temporal transition between healthy and stressed cells in batch culture ap-

pears as a sudden reduction in the apparent mass per cell [4]. We further assume that the

consumption rate µ of the nutrient and the doubling time τ do not depend on the local
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concentration of the nutrient, although this assumption can be relaxed for more accurate

estimates.

A. Depletion of nutrient in a well-stirred batch culture

We now show that the nutrient consumption rate µ can be estimated by analyzing the

growth of cells in batch culture. The resulting expression for µ will be used in the next

subsection.

Define n(t) as the concentration of cells at time t, and define c(t) as the limiting nutrient

concentration at time t. Growth of the cells is exponential

n(t) = n0 2 t/τ (1)

The nutrient concentration is depleted by the cells at a rate µ

dc

dt
= −n(t) µ = −n0 µ 2 t/τ , c(t) > 0 (2)

Eq. 2 can be integrated to find to the solution for c(t)

c(t) = c0 +
τ n0 µ

ln2

(
1− 2 t/τ

)
= c0 +

τ µ

ln2
(n0 − n(t)) (3)

where c0 ≡ c(0). Depletion of the nutrient occurs at time td, such that c(td) = 0. By

Eq. 3,

n(td) =
ln2 c0

τµ
+ n0 (4)

We assume that we work in the limit of a small inoculum, i.e. n0 ≈ 0. Then

n(td) =
ln2 c0

τµ
(5)

4



Define nd ≡ n(td). Then, we can express µ in terms of nd, c0, and τ :

µ =
ln2 c0

τ nd
(6)

Experimentally, nd is indicated by a sudden change in the apparent mass per cell [4].

B. Distribution of nutrient in a trap

We now model distribution of the nutrient in a microfluidic trap in contact with the

fresh media at fixed concentration c0 along the open boundary at z = 0. We assume that

cells are present at a constant density n within the trap. We assume a reaction-diffusion

model for the nutrient
∂c

∂t
= D

∂2c

∂z2
− n µ , c(z) > 0 (7)

where z is a depth coordinate for the trap, and D is the effective diffusion constant for

the nutrient. Steady state of this system implies

∂2c

∂z2
=

n µ

D
(8)

which has the solution

c(z) =
(n µ

2D

)
z2 + C1z + c0 (9)

with C1 a constant to be determined. For a sufficiently deep trap, c(z) will become zero

at some critical value z = zd. At this point, both c(zd) and the diffusive flux −D ∂c
∂z (zd)

are zero, i.e.

∂c

∂z
(zd) = 0 =

(n µ

D

)
zd + C1 (10)

c(zd) = 0 =
(n µ

2D

)
z2

d + C1zd + c0 (11)
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Eq. 10 can be used to find C1, such that

c(z) =
(n µ

2D

)
z2 −

(n µ

D

)
zd z + c0 (12)

Furthermore, Eq. 11 implies

c(zd) = 0 =
(n µ

2D

)
z2

d −
(n µ

D

)
z2

d + c0 = −
(n µ

2D

)
z2

d + c0 (13)

which leads to the expression for the depth of healthy cells

zd =

√
2D c0

n µ
(14)

Using the batch result Eq. 6 for µ, Eq. 14 can be rewritten as

zd =

√
2D τ

ln 2

nd

n
(15)

which is independent of c0.

In order to estimate for the value of the depletion depth, zd, we obtained parameter

values from the literature:

• nd = 8.3× 10−14 M , corresponding to 5× 107 cells per mL when OD600=0.3 [4].

• n = 5.5× 10−10 M , approximating the close packing of cells with cell volume

∼ 3 µm3.

• D = 880µm2/s, the diffusion constant reported for serine, a representative amino

acid, in water at 25◦C [5]. This is consistent with the suggestion that the limiting

nutrient is an amino acid [4].

• τ = 20 min = 1200 s, often reported as the doubling time for E. coli [4].
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Using the above quantities, we find zd ≈ 21 µm. However the estimate can be revised

by noticing that diffusion should be faster in our experiments, which occur at a higher

temperature (37◦C). Supposing that D scales with respect to temperature and viscosity

according to the Stokes formula for the diffusion constant of a sphere, we revise our

estimate to be zd ≈ 25 µm.

IV. NARROW CHANNEL FLOW - POLYNOMIAL EXPANSION

The equations of motion for the narrow channel flow (4)-(6) from the Main text can be

further reduced in the case that f(z, t) and c(z) are polynomials in z. Suppose

f(z, t) =
N∑

n=0

fn(t) zn

c(z, t) =
N∑

n=0

cn zn

(16)

where many cn may be zero (e.g. cn = 0 for n > 4). Then Eqs. (4)-(6) of the Main text

lead to

N∑

n=0

dfn

dt
zn + (αz + v0(t))

N∑

n=0

fn n zn−1 = γ
N∑

n=0

(cn − fn) zn (17)

By identifying corresponding coefficients, we finally arrive at the set of ODEs

dfn

dt
= −nαfn − (n + 1)v0(t)fn+1 + γ(cn − fn) , 0 ≤ n < N (18)

dfN

dt
= −NαfN + γ(cN − fN) (19)

Equations (18)-(19) provide a closed set of ODEs for narrow channel flow which was used

for the numerical bifurcation analysis shown in the Main Text.
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Notice that high order coefficients of f remain zero if initially zero. That is, if cn = 0

and fn(t = 0) = 0 for M ≤ n ≤ N , then fn(t) = 0 for M ≤ n ≤ N .

For the side trap geometry (v0 = 0), all fn decouple from one another. Equations (18)

and (19) can then be used to show that symmetric flow is globally stable.

V. LINEARIZED EQUATIONS FOR SMALL PERTURBATIONS ABOUT

ZEROTH-ORDER SOLUTION IN A SIDE TRAP

Streaming is simplest to analyze in the case where narrow channel-like asymmetric in-

stabilities are forbidden by geometric constraints. This can be done by analyzing a side

trap, where instead of two open walls at z = ±Lz, there is an open wall at z = Lz and

a solid wall at z = 0. In the following, we present a brief derivation of the equations

governing eigenfunctions in a side trap geometry. These equations can be investigated

with a mathematical analysis package capable of solving boundary value problems. We

do this using the program Maple (version 11). Solutions are first extended from z = 0 to

z = ε by a high order, but approximate, polynomial solution, in order to avoid singular

behavior of the solution near the solid wall. Maple solves the boundary value problem

with this polynomial-extended boundary condition.
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A. µ = 0 linearized equations

First consider the case of negligible granular viscosity, i.e. µ = 0. We assume that the

zeroth-order solutions, v0(z) and f0(z), are perturbed by the functions

ṽz(x, z, t) = eλt eikx v(z) (20)

ṽx(x, z, t) =
i

k
eλt eikx ∂v

∂z
(z) (21)

p̃(x, z, t) = eλt eikx p(z) (22)

f̃(x, z, t) = eλt eikx f(z) (23)

Note that ∂ṽx/∂x + ∂ṽz/∂z = 0, such that the full divergence "∇ · ("v0 + "̃v) = α. The lin-

earized equations that govern the growth of perturbations are straightforward to derive,

with the result

g(f0)
∂v

∂z
+ k2p = 0 (24)

∂p

∂z
+ g′(f0) fv0 + g(f0)v = 0 (25)

v0
∂f

∂z
+ (γ + λ)f + v

∂f0

∂z
= 0 (26)

where g′(f) = dg(f)/df . Equations 24-26 must satisfy the boundary conditions

v(0) = 0 (27)

f(0) = 0 , (λ "= −γ) (28)

p(L) = 0 (29)

The boundary condition in Eq. (28) follows from Eq. (26) if λ "= −γ, since it can be ex-

pected that v0(∂f/∂z) + v(∂f0/∂z) = 0 at z = 0. f(0) may be nonzero if λ = −γ exactly,

but because these eigenfunctions are always stable, they are not relevant to cell streaming.

Eigenfunctions for the side trap geometry can be associated with the eigenfunctions for
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the open trap geometry with symmetric uniform flow as the zeroth order approximation.

The boundary conditions are then p(±Lz) = 0 and f(0) = 0 (when λ != −γ). Symmetry

of the open trap eigenfunctions satisfying Eqs. (24)-(26) is chosen such that v0 and f0 are

odd and even, respectively, with respect to z. This choice ensures that v(0) = 0, as is

necessary for a side trap.

1. µ = 0 lowest order solutions for k → 0

Instead of v(z), consider the scaled function w(z) = v(z)/k2. The boundary condition

for w(z) is w(0) = 0. Then Eqs. (24)-(26) can be rewritten

g(f0)
∂w

∂z
+ p = 0 (30)

∂p

∂z
+ g′(f0) fv0 + k2 g(f0)w = 0 (31)

v0
∂f

∂z
+ (γ + λ)f + k2 w

∂f0

∂z
= 0 (32)

In lowest order in k2 (assuming w is order 1) these equations are

g(f0)
∂w

∂z
+ p = 0 (33)

∂p

∂z
+ g′(f0) fv0 ≈ 0 (34)

v0
∂f

∂z
+ (γ + λ)f ≈ 0 (35)
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Analytic solutions for the k = 0 case can be indexed by a nonnegative integer m, such

that

λm ≈ −(γ + mα) (36)

fm(z) ≈ zm (37)

pm(z) ≈ α

∫ L

z

dz1 g′(f0(z1)) zm+1
1 (38)

w(z) ≈ −
∫ z

0

dz1
p(z1)

g(f0(z1))
(39)

B. Linearized equations for non-zero viscosity

The condition µ = 0 is somewhat unrealistic for a granular flow. While µ #= 0 effects do

not appear for narrow channel flow, we find that stability of uniform flow is significantly

increased by a small value for µ.

Linearization of the dynamics for µ #= 0 can be done as in the µ = 0 case. The equations

analogous to Eqs. (30)-(31) are now

g(f0)
∂v

∂z
+ k2p− µ

∂

∂z

(
∂2v

∂z2
− k2v

)
= 0 (40)

∂p

∂z
+ g(f0)v + g′(f0) f v0 − µ

(
∂2v

∂z2
− k2v

)
= 0 (41)

The boundary conditions in Eqs. (27)-(29) continue to apply. Additionally, we assume a

continuous tangential stress condition (a slip condition) at both the inner wall and the

outer free boundary, which can be written in this case as

∂ṽx

∂z
+

∂ṽz

∂x
= 0 (42)
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For the velocity function v(z), this condition leads to boundary conditions

k2v(0) +
∂2v

∂z2
(0) = 0 (43)

k2v(L) +
∂2v

∂z2
(L) = 0 (44)

Calculations reported in the main text solve these equations using solutions that are odd

in v.

VI. DISCRETE ELEMENT SIMULATIONS

A. Details of simulation algorithm

Our basic algorithm for soft-particle simulations of growing and dividing spherocylinders

has been described previously [6]. It calculates normal and tangential forces between cells

based on the overlap of virtual soft spheres centered at the nearest points on the axes of

interacting spherocylinders. The motion of the cylinders is obtained by the integrating

the Newton’s equations using 4th order predictor-corrector scheme, and each cell’s length

" and f -factor are governed by the first-order ODEs associated with each cell. After the

cell length exceeds a certain prescribed value "div, the cell is replaced by two collinear cells

with half its length at the same location.

Cells experience negligible sliding friction from motion against the solid side walls of

the trap (defining the x and z boundaries) or against other cells. The time step is

∼ 0.25 × 10−5 (AU). The average length of division "div is typically short, i.e. "div = 3,

but "div = 5 is used for the simulations mentioned in Section VIB. The actual division

length is chosen randomly from a Gaussian distribution with mean "div and coefficient of

variation 0.2. Drag force on the cells is proportional to velocity of the cell times the factor

g(f) = 2(f/d)2M, with M = 1 + 1.5("− d) the dimensionless mass of the cell, and " the

current length of the cell. Most of the other parameters in the simulation are the same
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as in Ref. [6].

In Fig. 6 we show an example of DES simulation of a periodic cell flow in a narrow open

channel, and compare it with analytical theory discussed in the main text.

B. The role of cell shape in streaming

Though cell streaming can be theoretically investigated without including the effects of

cell shape, simulations suggest that colonies of longer cells are more prone to destabilize

into streams. Additionally, streams of long cells tend to be more highly focused. Fig. S7a

presents space-time diagrams demonstrating streaming of long cells, with a snapshot of

the cell configuration appearing in Fig. S8a. Figures S7b, c and S8b, c show the dynamics

of short cells for comparison. The full time-lapse movie of the corresponding simulation

runs are shown in Supplementary Movies 6 and 7. We conjecture that long rods enhance

streaming by (i) reducing granular viscosity by local ordering of cells into flowing layers,

and (ii) orienting the stress tensor along the direction of streams.
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List of Supplementary Movies

Movie S1. Time-lapse microscopy of 400 µm-long segment from the 2 mm-long open

trap. Images were taken every minute with a 60x objective using phase contrast and

stitched together.

Movie S2. Time-lapse microscopy of 90x100x1 µm3 side trap. Images were taken every

minute with a 60x objective using phase contrast.

Movie S3. Time-lapse microscopy of 90x100x1.65 µm3 side trap. Images were taken

every minute with a 60x objective using phase contrast. No streaming is observed in this

trap because of the higher depth.

Movie S4. Time-lapse microscopy of 125 µm-long segment from a 90x300x1.65 µm3 open

trap. Images were taken every 2.5 min with a 60x objective using phase contrast.

Movie S5. Numerical simulation of the oscillating flow in a narrow open channel (see

Fig. S6 for simulation details)

Movie S6. Numerical simulation of the streaming instability of short cells in a wide side

channel (see Fig. S7 for simulation details)

Movie S7. Numerical simulation of the streaming instability of long cells in a wide side

channel (see Fig. S7 for simulation details)
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Supplementary Figure S1: Space-time plot of the average exit velocity calculated over ∼20 µm
near the top edge of the monolayer segment shown in Fig. 1c of the main text.
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Supplementary Figure S2: a. Schematic diagram of the microfluidic device with side traps (light
blue rectangles) on either side of the main channel (black). The traps have been magnified 300%
for visualization. Traps are seeded with cells from the cell loading port. Cells are supplied with
nutrients from the media port, and as they escape from the trap, they are transported by the flow
to one of the waste ports. b. Sketch of one cell trap. Color indicates the cell “size” c. Snapshot
of the z-component of velocity overlaid with a phase contrast image of a cell monolayer confined
in a 1µm-high side trap. A single ”red” stream is flanked by two clusters of large slow moving
cells. Deeper in the trap, cells are smaller and almost immobile. This snapshot corresponds to
the frame at time 149 minutes in the Supplementary Movie 2. d. Space-time plot of the exit
velocity calculated over ∼20 µm strip at the bottom edge of the monolayer shown in Panel c.
In this plot, a stream of cells shows up as a horizontal band along the middle. The blue areas
around this band represent the flanking slow cells. e, f. Plots analogous to c, d, but for a
1.65µm-high side trap (see Supplementary Movie 3). In this case, the friction of cells along the
wall is reduced to a minimum, and streaming is not pronounced.
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Supplementary Figure S3: a) Magnitude of the vertical component of velocity overlaid with a
phase contrast image of a colony in an open trap that is half as wide (∼90µm) as the chamber
shown in Fig. 1 of the main text. This snapshot corresponds to time 122.5 min in Supplementary
Movie 4. Unlike in other one micron high traps, here cell size seems to be uniform and less
affected by any chemical gradients that may exist within the colony, and cells seem to be pushed
out without streaming. Space time plots for the average exit velocity at the bottom (b) and
top(c) of the trap respectively. The average of velocity was calculated over 20 µm from each
edge. These plots show that the escape velocity on both sides of the trap is anticorrelated.
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Supplementary Figure S4: a. Snapshot of a colony growing in the ∼1µm-high chamber described
in Fig. S2. b. Plot of the average cross sectional area of cells as a function of the distance from
the open edge of the trap.

19



a b

0.029 0.03 0.03350.26

0.3

0.33

A

γ

γ

BT 

O/S

A/SA

O

S

0.025 0.03 0.035
−0.015

0

0.015

A

f 1

H1
NC
N

H1
H2

H2
γ=0.3

0 0.02 0.04 0.06 0.08
0

1

2

3

4

5

A

BT

asymmetric

symmetric

c

Supplementary Figure S5: A local bifurcation analysis of the narrow channel flow (global bi-
furcations exist, but are not treated in detail). a. One parameter local bifurcation diagram
(in coordinates A ≡ c(0) and f1, the first-order term of the f polynomial). Oscillations appear
between Hopf bifurcations H1 and H2, while fixed points corresponding to asymmetric solutions
exist left of H2 and between H1 and the saddle-node point N . Unstable fixed points exist left of
C and between C and N . Stable symmetric fixed points (f1 = 0) are right of C. Parameters are
α = 1, γ = 0.3, c(z) = A + (z/Lz)4, g(f) = f2, Lz = 1. b. A two-parameter local bifurcation
diagram for the system in a in parameters A and γ. Symbols S, A, and O indicate regions with
symmetric fixed points, asymmetric fixed points, or oscillations, respectively. Bistable attractors
are listed together, e.g. O/S. BT represents a Bogdanov-Takens bifurcation. The dashed line
indicates the value of γ used in panel a. c. A wider view of the bifurcation diagram b. The
majority of space not belonging to symmetric flow is associated with a pair of asymmetric fixed
points. These bifurcation diagrams are derived from local bifurcation analysis in Matcont [7].
Consistent with the appearance of a Bogdanov-Takens bifurcation [8], a global bifurcation analy-
sis is necessary to fully understand the behavior of this system. Numerical investigation confirms
the existence of infinite-period homoclinic bifurcations that lead to large-amplitude limit cycles
(data not shown).
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Supplementary Figure S6: Space-time diagrams of the narrow-channel flow. DES simulations
were started from a single cell placed in the middle of the trap (narrow width Lx = 10, length
2Lz = 80). Color characterizes the cell “diameter” f averaged within a strip of width 2 along z di-
mension. a. Stationary asymmetric regime is seen for parameters γ = 0.5, c(z) = 1 + 20 (z/Lz)4;
b. Oscillatory behavior is seen for parameters γ = 0.1, c(z) = 1 + 100 (z/Lz)4. Both simulations
have parameters "div = 3, α = 0.5; c. Space-time diagram of f for the continuum description of
the narrow-channel flow with the same parameter values.
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Supplementary Figure S7: Space-time diagrams for simulations of cell flows in wide side traps
(Lx = 150, Lz = 20) with different cell aspect ratios. a. Streaming flow of long cells (average
length 5 at division), b. Uniform flow of short cells (average length 3 at division), c. Short
cells with streaming flow. Panels b and c correspond to the simulations in Fig. 4 of the main
text. Other than differing average cell size and elongation rate (the two are balanced to keep
the division rate of long cells the same as short cells), the parameters for the simulation in a are
the same as in b and c.
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Supplementary Figure S8: Snapshots at time t = 30 of the three simulations in Fig. S7. Green
and red represent low (f = 0) and high (f ≥ 10) values of f , respectively, for each cell.
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