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Abstract  16 

 17 

A diverse array of bacteria species naturally self-organize into durable macroscale patterns on 18 

solid surfaces via swarming motility—a highly coordinated, rapid movement of bacteria powered 19 

by flagella1-5. Engineering swarming behaviors is an untapped opportunity to increase the scale 20 

and robustness of coordinated synthetic microbial systems. Here we engineer Proteus mirabilis, 21 

which natively forms centimeter-scale bullseye patterns on solid agar through swarming, to “write” 22 

external inputs into a visible spatial record. Specifically, we engineer tunable expression of 23 

swarming-related genes that accordingly modify pattern features, and develop quantitative 24 

approaches to decode input conditions. Next, we develop a two-input system that modulates two 25 

swarming-related genes simultaneously, and show the resulting patterns can be interpreted using 26 

a deep learning classification model. Lastly, we show a growing colony can record dynamic 27 

environmental changes, which can be decoded from endpoint images using a segmentation 28 

model. This work creates an approach for building a macroscale bacterial recorder and expands 29 

the framework for engineering emergent microbial behaviors.30 
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Main Text 31 

 32 

Swarming behaviors are ubiquitously found in natural systems, ranging from bird flocks to 33 

microbial communities, and have inspired creation of artificial systems such as robot swarms6-8.  34 

A collective movement stemming from individual interactions, swarming can greatly increase a 35 

community’s scale as well as robustness to noisy individuals and environments. The swarming of 36 

many microbial species creates complex emergent patterns at the centimeter-scale on solid 37 

surfaces9,10. While a long-standing goal of synthetic biology has been to program self-organization 38 

in such a fashion, swarming motility has yet to be engineered or used for biotechnological 39 

applications11-13. Previous approaches have focused on prototypical microbes such as E. coli, 40 

which forms homogenous colonies, and have engineered swimming and quorum-sensing 41 

systems in liquid-agar environments, or utilized external pre-patterning to generate coordinated 42 

behavior14-16. One promising application of engineering natural swarming is the creation of a 43 

durable spatial recording system, using the sensing capabilities of millions of individual bacteria 44 

within a swarm to visibly “write” information onto a solid surface. Thus far, synthetic cellular 45 

information recording efforts have achieved recording of multiple inputs, cellular lineage, and 46 

transient signals, primarily within DNA, but rely on sequencing and other technologies for 47 

decoding17-21.  48 

 49 

We focused on engineering the unique swarming of Proteus mirabilis—a commensal gut 50 

bacterium also commonly found in soil and water, which produces a bullseye pattern on solid agar 51 

defined by concentric rings of high bacteria density that are visible to the naked eye22 (Fig. 1a). 52 

The inherent clock-like timing and internal consistency of its ring formation naturally suggest 53 

application as a recording system, similar to the way a growing tree records information in the 54 

rings in its trunk23. Although the ability of P. mirabilis to produce rings has been known for over 55 

100 years, it has not been developed as a synthetic biology platform, and quantification of its 56 

macroscale patterns has been limited24. Beyond the large-scale features of P. mirabilis that 57 

enable simple decoding visually, applying methods of deep learning and image segmentation can 58 

further decode multiple external inputs and dynamic conditions from more complex pattern 59 

features.  60 

 61 

The bullseye pattern of P. mirabilis is created from a sequence of phases starting with initial colony 62 

growth (lag), followed by oscillatory cycles of synchronized colony expansion (swarming), and 63 

stationary periods of cell division (consolidation). The synchronicity of its swarming is achieved 64 
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by complex coordination of cell elongation, secretion of surfactant to aid movement, intercellular 65 

communication, and alignment of swarmer cells into rafts by intercellular bundling of 66 

overexpressed flagella25, 26. While investigation of the mechanisms governing these behaviors is 67 

ongoing, studies have identified an array of genes upregulated during consolidation phases, 68 

including those responsible for synthesis of flagella, metabolism, and cell division, and during 69 

swarming phases, such as the master regulator flhDC26-30. These works have shown that 70 

modification of expression of these genes and choice of growth conditions can lead to different 71 

variations of the ring pattern31, 32. We therefore chose the strain PM7002, with baseline conditions 72 

that would create a pattern with distinct ring boundaries, such that modifications to the pattern 73 

would be easily visible and quantifiable (Fig. S1, S2).  After establishing these conditions, we 74 

expressed swarming-related genes to controllably modify specific colony pattern features, which 75 

could be subsequently analyzed and decoded to report on conditions during colony growth (Fig. 76 

1a).  77 

 78 

To initially demonstrate swarm pattern modulation, we engineered P. mirabilis with a high-copy 79 

plasmid carrying an isopropyl ß-D-1-thiogalactopyranoside (IPTG) inducible promoter, pLac, 80 

expressing cheW, a chemotaxis-related gene upregulated in the swarming process (Fig. S12)29, 81 
33, 34. In E. coli chemotaxis, CheW is a membrane-bound coupling protein part of a signaling 82 

complex in which it bridges the kinase CheA to chemoreceptors, allowing phosphotransfer to 83 

CheY and CheB, where CheY is involved in control of flagellar motor rotation35. Although the exact 84 

role of cheW in swarming is not fully known, a cheW mutant of P. mirabilis was previously found 85 

to be unable to swarm33. Here, inducing constitutive cheW expression with increasing 86 

concentrations of IPTG in the agar generated colonies of decreasing ring width and size at 24 87 

hours, compared to a control gfp-expressing strain which showed no change in pattern in 88 

response to IPTG (Fig. 1b). To quantify the patterns, we examined the radially averaged pixel 89 

intensity as a proxy for colony density in each of the conditions, where high pixel intensity (light 90 

colors) represents lower density (Fig. 1c, Fig. S3). All colonies had a characteristically dense 91 

boundary around the central inoculum, seen as a dip in the intensity plot around 0.25 cm from the 92 

center of the colony (x=0 in the plot), and showed periodic changes in density across the colony. 93 

As expected, the radially averaged intensity profiles showed peaks of intensity corresponding to 94 

the periodic ring boundaries. With increasing cheW expression, the profiles showed greater 95 

density near the inoculum and at the ring boundaries, which can be seen as lighter areas on 96 

heatmaps of radially averaged intensities (Fig. 1d). We constructed a small dataset and 97 

measured colony radius manually using image processing tools, and ring widths using a custom 98 
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algorithm (Methods) (Fig. 1e). The colony radius and ring width correlated well with IPTG 99 

concentrations (R2= 0.90 for each). To more accurately decode input conditions from the pattern, 100 

we fit a multinomial regression model on these measurements and found that the model correctly 101 

predicted each colony’s input IPTG from the combination of its radius and ring width in all cases 102 

(Fig. 1f). We thus reasoned that colony features could potentially encode information about 103 

external inputs received by the bacteria, and feature measurements could subsequently be used 104 

to decode the information. 105 

 106 

Manipulation of multiple swarming-pathway genes 107 

Given the variety of features observed in P. mirabilis patterns in the literature beyond the ring 108 

widths and overall colony radii, we explored the potential for multiplexed information encoding. 109 

Here we sought to identify additional genes which could distinctly modulate colony pattern 110 

features (Fig. 2a). We chose genes previously implicated in a range of points in the swarm 111 

process, including umoD, which controls the master regulator of swarming, flhDC; the signaling 112 

factors fliA and flgM, which are involved in flagellar gene transcription; and lrp, which affects 113 

general cellular processes in response to leucine presence29, 36-40. Induced expression of these 114 

genes via IPTG generated a variety of patterns, ranging from dense ruffled textures, to “spikes”, 115 

to indistinct ring boundaries (Fig. 2b). Scanning a range of IPTG concentrations showed graded 116 

changes in patterns (Fig. S4). For example, with minimal IPTG-induced expression, the lrp strain 117 

formed spikes in the inner colony rings, and at maximal induction each ring boundary was spiky. 118 

Increased expression of flgM caused colony radius at 24 hours to shrink, while fliA caused the 119 

formation of more visible dots or “microcolonies” just within the boundaries of each ring. As umoD 120 

expression increased, colonies became more symmetric, and ring boundaries and the inoculum 121 

edge became fainter. Taken together, these various qualitative characteristics suggested that 122 

induced expression of certain swarm genes could indeed affect several pattern features which 123 

could be measured and quantified. 124 

 125 

We next examined the radially averaged profiles of each pattern, which revealed distinct 126 

characteristics for each strain (Fig. 2c). For example, overall colony density was higher with 127 

induced cheW expression than with umoD. The spikes visible in the lrp pattern, which caused ring 128 

boundaries to spread over greater widths, reduced the sharpness of the ring boundaries in the 129 

radially averaged profiles. Given the repeating nature of features in the patterns, we also explored 130 

visualization of the Fourier spectra of the polar transforms of the images, which highlight the 131 

presence of frequency information, to see if the spectra varied between strains (Fig. 2d). The 132 
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periodic features in the patterns resulted in high visible intensities in certain regions of the Fourier 133 

transform images. For example, the umoD strain displayed a higher magnitude in the outer 134 

regions of the transformed images, representing high-frequency (i.e., short distances between 135 

repeated features) information, while the other strains showed greater magnitude at the central 136 

regions, which represents lower-frequency features. In summary, we saw that the visible 137 

differences in patterns between the engineered strains were reflected in, and thus could be 138 

analyzed from, quantitative representations of the images. 139 

 140 

We next sought to identify features of each strain’s pattern which could allow for determination of 141 

the input IPTG concentration. We generated a dataset of images for each strain grown at a range 142 

of inducer concentrations and measured a range of features for each (Fig. S5a). The low 143 

frequencies of the Fourier spectra were found to increase with IPTG induction for the flgM and 144 

cheW strains, reflecting the visual observation of thinner, fewer rings of increased density at 145 

higher IPTG. (Fig. 2e). A second measure, the local coefficient of variation (CV), increased with 146 

increasing IPTG for the lrp strain, which could be observed visually in the spiked rings (Fig. 2f). 147 

Finally, the distinctness of the inoculum border, measured by the change in intensity over the 148 

border, decreased with increasing IPTG for the umoD strain, particularly from 0.1 to 1 mM IPTG.  149 

(Fig. 2g). These measurements showed that induced expression of these genes could 150 

quantifiably affect the pattern in response to changes in IPTG.  151 

 152 

As an approach for decoding information from the patterns, we explored fitting regression models 153 

on these measurements. The samples were binned into three classes (0-0.09, 0.1-0.9, and 1-10 154 

mM IPTG), and then each feature individually, and all possible combinations of the measured 155 

features, were used to fit multinomial regression models, to identify which combination would best 156 

decode a given strain’s pattern. The performance of such models can be evaluated using a multi-157 

class area under the receiver-operating curve (AUC) metric, where the more accurate a model is 158 

for predicting true positives compared to false positives for each class, the closer the AUC will be 159 

to 1. The AUC of each strain’s fitted model was evaluated on the input data (Fig. 2h, S5b). For 160 

each strain, the combination of parameters which gave the highest AUC varied, confirming that 161 

each strain was encoding information in a characteristic combination of pattern features. The best 162 

models for the experimental strains with cheW, fliA, lrp generally had AUC>0.9, showing that the 163 

models were well able to differentiate true positives in each IPTG class from false positives. The 164 

AUCs were 0.6 for the gfp control strain, just slightly above a random classifier (AUC=0.5), 165 

suggesting that pattern parameters were not strongly affected by increasing IPTG for control 166 
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strains. The confusion matrices showed that the fitted models correctly classified a majority of the 167 

plates for each strain (Fig. S5c). Thus, information about the environment encoded within the 168 

engineered strains’ patterns can be decoded using combinations of relevant pattern features. 169 

 170 

Dynamics of engineered P. mirabilis strains 171 

P. mirabilis swarming creates patterns not only in space, but also in time; this temporal regularity 172 

suggests the possibility of encoding information in both the endpoint patterns and their dynamic 173 

growth phases. We aimed to gain an understanding of the dynamics of the engineered strains by 174 

time-lapse imaging of colony growth (Fig. 3a). In order to capture high-resolution images of 175 

swarming, we developed a time-lapse setup using a commercial flatbed scanner. For each strain, 176 

a time-lapse was captured with maximal IPTG concentration at 25°C; images were taken every 177 

10 minutes over the course of the time-lapse (Fig. 3a, Movie S1). The individual images were 178 

then radially averaged and full time-lapses were visualized via heatmaps (Fig. 3b). Using a 179 

custom semi-automated algorithm (see Methods), we identified the location of the colony front at 180 

each timepoint and obtained trajectories with high spatiotemporal resolution (Fig. 3c). The colony 181 

growth trajectories showed that each of the engineered strains maintained the classic alternation 182 

in phases, but with changes in aspects such as initial lag time and length of the phases compared 183 

to the control gfp strain. We then measured the mean length of time of each phase from each of 184 

these trajectories (Fig. 3d), which, together with distance swarmed during each swarm phase, 185 

enabled the calculation of swarm speed (Fig. 3e).  186 

 187 

To explore whether certain dynamic parameters would show a trend with increasing IPTG for 188 

each strain, we generated individual time-lapses of each strain grown at a range of IPTG 189 

concentrations (Figs. S6-7). When comparing uninduced to induced conditions, we observed 190 

distinct measurements for each strain such as the lag time for umoD, the length of the middle 191 

consolidation phases for cheW, and the time for the colony to cover the plate for fliA (Fig. 3f). 192 

More complex dynamic parameters also encoded information; for example, the asymmetry of the 193 

colony front during swarming phases increased with IPTG for the lrp strain (Fig. 3h). These results 194 

suggest that dynamic parameters can also be used to encode and decode information from these 195 

spatiotemporal patterns, and that in the future strains can be chosen for a given application 196 

depending on the desired time scale of recording.   197 

 198 

 199 

 200 
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Multiplexed recording using a dual-input strain 201 

In order to build a strain which could provide information about multiple inputs simultaneously, we 202 

induced a second swarming-related gene with the pBAD operon and promoter, transcribed in the 203 

presence of arabinose (Fig. S9). Since swarming-related genes have interdependent effects, we 204 

sought to try two genes which robustly changed distinct pattern features on their own. We thus 205 

built a combination strain with cheW expression induced by the pLac promoter, and umoD 206 

expression induced by pBAD promoter (Fig. 4a, Fig. S9). Initial characterization of this strain 207 

demonstrated that its swarm patterns indeed distinctly reflected the presence or absence of each 208 

input (Fig. 4b). Representative radially-averaged profiles were visualized as heatmaps for 209 

comparison (Fig. 4c). The plates imaged followed a characteristic pattern at most of the 210 

conditions. Increasing IPTG from 0 to 1 mM, inducing cheW expression, resulted in a visible 211 

decrease in 24-hour colony radius, ring width, and colony symmetry, as seen previously in the 212 

single input strain. Meanwhile, increasing arabinose from 0 to 0.1% resulted in a highly symmetric 213 

pattern with initially semi-distinct, narrow rings giving way to the indistinct wide rings more 214 

characteristic of the single-input umoD pattern. The combination of IPTG and arabinose presence 215 

resulted in a similar pattern, with narrower inner rings giving way to wider outer rings, but with 216 

smaller colonies at 24 hours and asymmetric ring boundaries compared to those formed with 217 

arabinose alone.  218 

 219 

To characterize the cheW and umoD combination patterns in more detail, a dataset of plate 220 

images at IPTG concentrations of 0, 2.5, and 5 mM combined with arabinose at 0%, 0.1%, and 221 

0.2% was created. The average percent of the plate covered by the colony at each condition 222 

decreased with increasing IPTG and increased with the addition of arabinose (Fig. 4d). However, 223 

increase of arabinose from 0.1% to 0.2% had little effect on the colony area except at 2.5 mM 224 

IPTG (Fig. S9). Similarly, average radial CV as a measure of colony asymmetry increased with 225 

the induced expression of cheW, but decreased with the addition of arabinose inducing umoD 226 

expression (Fig. 4e, S9).  227 

 228 

As done previously for the single-input strains, a set of standard measurements was then taken 229 

on each image in the dataset, and a 9-class multinomial regression model was fit on the output 230 

(Fig. S10). The model performed poorly, predicting almost all images as 0% arabinose, and the 231 

maximum AUC achieved was only 0.72. This result suggested that the two-input strain’s patterns, 232 

involving interdependent swarm genes, were too complex for the previous regression-based 233 

decoding method. However, the ease of distinguishing the patterns by human eye suggested that 234 
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the application of deep learning methods for image classification could prove useful for decoding 235 

the patterns. In particular, deep convolutional neural networks (CNNs) have clear applicability and 236 

have not yet been used to characterize macroscale bacterial colony patterns. CNNs can learn to 237 

extract salient features from bacterial images and classify patterns to predict the image class41.  238 

 239 

We fine-tuned models including ResNet and the Google Inception V3 networks to classify images 240 

in the dataset into one of the nine classes (details in Methods). The models were pre-trained on 241 

ImageNet data, a common strategy in deep learning (Fig. S11)42. Here, the fine-tuned Google 242 

InceptionV3 model was able to successfully classify the majority of our images (Fig. 4f).  An ROC 243 

curve was calculated (see Methods) and the AUC was 0.96, a noticeable improvement from the 244 

multinomial regression model. Such models can also be characterized by “top-3” accuracy, i.e., 245 

when used to predict the three most likely classes of an image, whether one of the three is the 246 

correct class; the fine-tuned model achieved a top-3 accuracy of 0.98. We observed that 247 

intermediate concentrations of IPTG and arabinose reduced the model’s accuracy due to some 248 

bimodality in pattern formation (Fig. 4f). Visualizing the pixel attributions of the model indicated 249 

the inoculum and inner rings had a large impact on the predictions, suggesting that these areas 250 

of the pattern were most affected by the induced expression of the different swarm genes (Fig. 251 

4g). Since the innermost portion of the colony was most critical to pattern prediction, pattern 252 

decoding may be possible after just a few hours of growth, rather than needing to wait 24 hours 253 

until the full plate is covered. Overall, these results suggest that our system can be used to encode 254 

and decode multiple inputs, and that the use of deep networks along with transfer learning will 255 

enable decoding of complex pattern feature changes.  256 

 257 

Multi-condition pattern segmentation and information decoding with deep learning 258 

We next sought to determine whether an engineered strain could record changes in the 259 

environment taking place during pattern formation and how these changes could be decoded from 260 

the endpoint pattern, similar to the analysis of rings in a tree23. We used the flgM strain, which we 261 

had observed to form two strikingly different patterns in the presence of 10 mM IPTG in the 262 

incubator vs on the benchtop: a swarming-inhibited, ruffled, dense pattern in the incubator at 263 

37°C, and a wide-ring, symmetric, less dense pattern on the benchtop at ~25°C (Fig. S11d). After 264 

inoculation, plates were first placed in one condition; after some time, plates were switched to a 265 

second condition, and certain plates were switched a third time before the endpoint scans were 266 

captured (Fig. 4h). Plates were scanned before each switch, creating a dataset of 21 images. 267 

Representative pattern images are shown in Fig. 4i. This shift in environmental conditions 268 
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resulted in the formation of rings alternating between indistinct, radially symmetric, wider rings 269 

and dense, asymmetrical, narrow rings, visible as bands on the polar-transformed images (Fig. 270 

4j). In general, denser regions corresponded to incubator growth, while fainter regions with wider 271 

rings corresponded to benchtop growth. 272 

 273 

To decode these alternating ring patterns, we manually annotated the dataset, creating ground 274 

truth masks of the boundaries marking the shift in the pattern corresponding to a shift in the 275 

environment. We then trained a U-Net model, a type of network frequently used for segmentation 276 

problems, pretrained on ImageNet to predict these boundaries given an input pattern image 277 

(details in Methods). Our model achieved above 95% training and validation accuracy and above 278 

90% recall within the first 25 epochs of training, showing that it could learn the features within the 279 

dataset (Fig. S11e). Application of the trained model to previously unseen images resulted in 280 

specific prediction of boundaries matching the ground truth, and noticeably did not simply highlight 281 

all ring boundaries (Fig. 4j). In future, these predicted boundaries could be used to back-calculate 282 

the time at which a given perturbation was experienced, by generating prior control 283 

measurements of the time of formation of rings at different conditions. Taken together, these 284 

results demonstrated that our approach could be used to decode information about changing 285 

environment from the engineered strains’ patterns.  286 

 287 

Discussion 288 

We have developed a proof-of-concept approach to engineering spatial patterns in P. mirabilis for 289 

information encoding and decoding. To date, bottom-up efforts to control spatiotemporal 290 

behaviors in microbial synthetic biology have required complex genetic circuits, used E. coli 291 

strains with liquid media, or required externally pre-patterned cues43-45. While there have been 292 

recent advances in encoding information in DNA and fluorescent bacterial colonies, there has not 293 

yet been an attempt to apply macroscopic pattern engineering for encoding information17, 21, 46. 294 

The approach described here takes advantage of the natural pattern formation capabilities of P. 295 

mirabilis on solid agar coupled with synthetic biological engineering approaches to modulate 296 

durable swarm patterns. We constructed genetic circuit variants with swarming-related genes and 297 

developed automated approaches for decoding information by quantifying aspects beyond typical 298 

colony radius measurements, such as colony asymmetry, swarming speed, frequency spectrum, 299 

and inoculum border distinctness. We then expanded to a dual-input system to sense two 300 

inducers, and trained a deep learning classifier to decode its patterns; while some works have 301 

begun to apply deep learning for segmentation of  macroscale colonies, and in several cases for 302 
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microscopic cell segmentation or classification of smaller colonies, our work represents a new 303 

application for classification, that of complex macroscale colony patterns 47-51. At the same time, 304 

the macroscale patterns had many attributes distinguishable by eye, which could enhance the 305 

applicability of this system. 306 

 307 

Since external conditions do affect pattern formation, a practical consideration for use of this 308 

system is to reliably produce robust patterns in differing laboratory or field conditions. We envision 309 

the use of this platform with side-by-side controls not exposed to the environment or input of 310 

interest, such that relative differences in pattern changes could be recorded. Additionally, future 311 

versions of the current system could include construction of knockout strains as well as 312 

chromosomal integration of promoter systems, which may allow for tighter control over the final 313 

pattern. In particular, for the dual-input strain, at the intermediate condition (2.5 mM IPTG and 314 

0.1% arabinose), two distinct groups of patterns emerged, one in which colonies were small and 315 

dense, and one in which colonies swarmed almost to the edge of the plate. This stochasticity 316 

could possibly be reduced in future with further engineering, a different combination of genes or 317 

a different range of concentrations of inputs, which in turn can allow the decoding models to 318 

achieve higher accuracy. Enhanced imaging approaches such as incorporating a pigment into to 319 

the swarm medium or using pigment-producing strains may also improve accuracy. Further 320 

development of algorithms for image processing will benefit from the training and application of 321 

deep learning models for segmentation of colony and ring boundaries, such as the pipeline we 322 

have recently developed48, 52. Additionally, the application of increasingly sophisticated 323 

computational approaches for modeling and machine learning-based classification will allow for 324 

the use of more complex spatiotemporal patterns48. Such models can be incorporated into easy-325 

to-run computer or mobile applications, and optimized for use with cell phone camera-images, 326 

allowing on-the-go analysis with inexpensive technologies. While we aimed to standardize our 327 

data acquisition method so that lighting, image size, and other factors would be constant 328 

throughout the datasets, these aspects can be intentionally varied to capture a more diverse 329 

dataset, which could help in developing models for application in a broader range of settings.  330 

 331 

Beyond these improvements, the proof-of-concept system presented here can be expanded in 332 

several directions. The approach could be used to explore other inputs such as light, radiation, or 333 

gaseous molecules, or to develop a longer running recorder for changes in temperature or air 334 

quality. Other swarming species with natural swarming properties could be manipulated such as 335 

Pseudomonas aeruginosa, Paenibacillus vortex, or Bacillus subtilis 2, 3, 53. Controlling swarming 336 
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behaviors by engineering bacteria can enable multiple applications, ranging from bacteria drug 337 

delivery to living material assembly. The approaches developed here can in turn shed light on P. 338 

mirabilis growth dynamics and virulence, and be applied to understanding the coordinated and 339 

emergent behaviors of microbes.   340 
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Methods 341 

 342 

Bacterial strains and growth conditions. Proteus mirabilis (ATCC 7002) was kindly provided 343 

by Dr. Philip Rather. Escherichia coli Mach1 for cloning was purchased from Fisher. P. mirabilis 344 

and E. coli were cultured in Luria-Bertani (LB) media (Sigma-Aldrich) supplemented with 50 μg 345 

ml-1 kanamycin, respectively. P. mirabilis was grown on either 3% or 1.5% agar to suppress or 346 

allow for swarming, except for time-lapse assays as indicated. 347 

 348 

Competent cell preparation. P. mirabilis (PM7002) cells and E. coli (Mach1) were made 349 

electrocompetent as follows. A fresh 2-mL overnight culture was subcultured 1:100 in 50 mL LB 350 

media, then grown at 30°C with shaking until logarithmic growth phase was reached, indicated 351 

when the optical density at 600 nm (OD!"") was 0.4-0.6. Growth was stopped by incubation of the 352 

culture on ice for 15 minutes. Cells were then pelleted by centrifuging for 10 minutes at 4°C and 353 

3000 rpm. After decanting, the pellet was washed three times in either 50 mL ice-cold filter-354 

sterilized 10% glycerol (P. mirabilis) or 50 mL ice-cold filter-sterilized water (E. coli), then 355 

resuspended in 220 μL 10% glycerol. 50 μL aliquots were stored in -80°C. 356 

 357 

Strain construction. The previously constructed pZE24 (pLacGFP pConstLacIQ) plasmid, 358 

containing the ColE1 origin of replication and a kanamycin resistance cassette, was used as the 359 

backbone for the inducible swarming plasmids.  Plasmids and chromosomal P. mirabilis DNA 360 

were prepared using standard procedures (Quiagen). Swarming gene sequences were obtained 361 

from GenBank (JOVJ00000000.1) and Gibson primers were designed (Eton) to amplify the genes 362 

from the chromosomal DNA via PCR (Phusion)54. A set of swarming plasmids were constructed 363 

using Gibson Assembly and standard restriction digest and ligation cloning to replace the gfp 364 

gene with the appropriate swarming gene. For plasmids which additionally contained pBAD-araC, 365 

the operon was obtained from the pBADmCherry-pConstAra plasmid (ATCC54630). After cloning 366 

plasmids into Mach1 E. coli, clones were verified via colony PCR (Phusion) and sequencing 367 

(Eton). Clones were then grown at 37°C with shaking overnight before being stored in 50% 368 

glycerol at -80°C. All plasmids and strains are listed in Tables S1 and S2; plasmid maps are 369 

shown in Fig. S12. 370 

 371 

P. mirabilis transformation. Plasmid DNA was introduced into P. mirabilis competent cells as 372 

follows. 50 μL aliquots of competent cells were thawed on ice for 10 minutes. DNA was added to 373 

the cells (200-400 ng DNA in a volume of 1-5 μL per aliquot). The mixture was then incubated on 374 
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ice for one hour. Cells were electroporated in prechilled electroporation 0.1 cm electrode gap 375 

cuvettes using a Bio-Rad MicroPulser set to E1 setting (1.8 kV) for bacterial electroporation. Cells 376 

were recovered by adding 1 mL prewarmed SOC media and incubated with shaking at 37°C for 377 

3 hours. The cells were pelleted by centrifugation for 10 minutes at 4°C and 3000 rpm, and 700 378 

μl of the supernatant was decanted before resuspension in the remaining 300 μl. The cells were 379 

then plated on pre-warmed 3% LB agar plates with antibiotics as necessary and incubated at 380 

37°C for 22-24 hours. Single colonies were inoculated and fresh overnight cultures were stored 381 

in 50% glycerol at -80°C.  382 

 383 

Bacterial growth and swarm assay. Overnight liquid bacterial cultures were prepared by 384 

inoculating LB media with cells from the -80°C glycerol stocks and supplementing with 50 μg ml-385 
1 kanamycin as appropriate. Cultures were incubated at 37°C with shaking for 12-16 hours. The 386 

OD600 of each culture was measured and normalized to 1.0 by dilution with LB media. Swarm 387 

assays were optimized from a protocol adapted from literature. A study to develop standard 388 

conditions is shown in Fig. S1. Precise maintenance of the selected conditions was necessary to 389 

achieve comparable results55. 1.5% agar (or, where indicated, 1.3% agar) was autoclaved, then 390 

cooled to 50-55°C with stirring. 5 μg ml-1 kanamycin, IPTG and/or arabinose were then added as 391 

necessary. 15 mL agar was poured in each 100x15 mm Petri dish and left to solidify partially 392 

uncovered under an open flame for exactly 30 minutes. 2 μL of the previously diluted liquid culture 393 

was inoculated on the center of each Petri dish and dried for 15 minutes partially uncovered under 394 

open flame. The plates were incubated at 37°C for 24 hours, then individually imaged using a 395 

scanner (Epson Perfection V800 Photo Scanner) set to 48-bit Color and 400 dpi, with the lid off 396 

and colony side facing up. The scanner was kept on the benchtop and room lighting was similar 397 

during all experiments; other settings of the scanner were also kept constant between 398 

experiments. Incubator humidity typically varied between 50-80% during the course of 399 

experiments. 400 

 401 

Time-lapses. For time-lapses on the benchtop (room temperature), up to six plates with 20 mL 402 

1.3% LB agar were inoculated and placed on the flatbed scanner using the previously described 403 

settings, and kept upside down to prevent condensation and with lids on to prevent contamination. 404 

A custom AppleScript was written to scan plates every 10 minutes for a pre-set length of time 405 

(typically 48-72 hours). Typical benchtop conditions were 25°C and 40-50% humidity. 406 

 407 
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Computational methods. Measurements of colony features were taken using MATLAB 408 

(Mathworks) image and signal processing functions. Images were preprocessed by conversion to 409 

grayscale; the plate rim was removed using the imfindcircles (based on a Hough transform) and 410 

regionprops functions, then the image was thresholded to find the colony’s center inoculum, 411 

typically easily identified by its dark boundary. Upon finding the center point, the colony was 412 

unrolled or “flattened” using a Cartesian to polar transformation and the scattered interpolant 413 

function, and resized to 1000x1000 pixels for ease of scaling analysis for the full dataset. The 414 

colony rim was also masked out (set to white). Radial profiles could then be easily generated by 415 

averaging the pixel intensity across each row of the image.  The ring widths in Fig. 1 were 416 

calculated by using 1-D Fourier/inverse Fourier transformation on the radial profile of each image 417 

of interest to filter out noise and by subsequent peak-finding. The ring widths of a single image’s 418 

radial profile were averaged to generate the individual measurements in Fig. 1e. 419 

 420 

The colors selected for plots of the different strains in figures 2-4 were derived from a previously 421 

developed “bright” color scheme56. Where described, local CV was calculated by moving a sliding 422 

window region of width 10 pixels across each row and calculating the CV within it, then taking the 423 

average of these calculated CVs over the whole image. Mean CV was calculated by obtaining the 424 

CV across each row, then averaging over all the rows. The inoculum edge intensity was measured 425 

for a given image as follows: the image was smoothed using the movmean function with averaging 426 

applied in 25-pixel windows horizontally. For each individual column of the smoothed image, the 427 

minimum value between the 15th and 60th rows (ie, in the region of the inoculum border) was 428 

subtracted from the maximum value in that region. The average over all the columns was then 429 

taken (calculation schematics in Fig. S5a).  430 

 431 

For certain measurements, a mask of the colony region was desired. A custom algorithm was 432 

developed using image processing functions in MATLAB. Briefly, a set of filters were applied to 433 

reduce local noise such as dust and scratches, then adaptive histogram equalization was applied 434 

to increase contrast. The entropyfilt function in MATLAB was applied and the output was 435 

thresholded, then the difference between this output and the original image was taken in order to 436 

sharpen the edges in the colony. The image was binarized and a series of morphological 437 

operations including dilation, opening, and hole-filling were applied to obtain a mask of the colony. 438 

The largest region was retained and all smaller regions were discarded.  439 

 440 
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In order to analyze the time-lapses, a method to track a growing swarm colony was sought; such 441 

methods have been of recent interest48, 57. P. mirabilis presents a unique challenge in this area; 442 

during its swarm phase, only a thin, almost transparent film of bacteria moves outwards, almost 443 

indistinguishable from local variations in agar intensity. Thus, the swarm front is difficult to detect 444 

with conventional thresholding-based or edge-detection algorithms which have been 445 

implemented previously for analysis of other species58-60. The colony region isolation algorithm 446 

described above also did not work on these images. The movement outwards on the plate (or 447 

vertically down on the flattened images) over time is difficult and noisy to capture. Towards an 448 

algorithm for tracking the swarm edge, each time-lapse image was first flattened as described 449 

above. Each image was subtracted from the preceding image using the imabsdiff function. The 450 

difference images were then averaged across columns, creating a radially averaged trajectory. In 451 

brief, the findpeaks function was used on each timepoint’s trajectory, using a custom algorithm 452 

and manual parameter refinement to determine the location in which to seek the peak, and taking 453 

advantage of the constraint that the colony edge would not move backwards over time. The user 454 

could choose (1) the minimum possible prominence of the peaks and (2) the range to the right of 455 

each previous peak in which the algorithm would seek the next timepoint’s peak, and then the 456 

algorithm would iterate over the whole time-lapse. The process would be repeated until the user 457 

was satisfied with the visual overlay of identified peaks on the time-lapse heatmap. The obtained 458 

colony front trajectory was then labeled using a custom algorithm involving the moving_polyfit 459 

function, bwareaopen and bwlabel, from which the locations of the lag phase, swarm phases, and 460 

consolidation phases were obtained61. In Fig. 3f, the cheW measurements were calculated by 461 

discarding the first and last consolidation phases and measuring the length of only the middle 462 

consolidation phases. 463 

 464 

Statistical tests were calculated and data was plotted either in MATLAB or in Python. Latex tables 465 

were generated using Overleaf. Multinomial regression models were fit to the measurements 466 

using the mnrfit function in MATLAB, returning the coefficients and p-values in Fig. S5b. For the 467 

single input strain data in Fig. 2h, each flattened image was divided into four sectors (each 250 468 

pixels wide) and measurements were taken on each sector to increase the number of 469 

measurements available, so that the model fitting could converge. The models were evaluated 470 

using the multiClassAUC function, which implements the Hand and Till function for area under 471 

the curve for multi-class problems62. Machine learning models were implemented in Tensorflow 472 

and Pytorch, with manual annotation of the flgM ground truth segmentation done using the 473 

LabelMe program63. Attributions in Fig. 4g were calculated following the Integrated Gradients 474 
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method of Sundarajan et al64. Fine tuning of the pre-trained models for classification of the dual-475 

input strain was done with on-the-fly augmentation of the dataset, using random rotations, 476 

translations, and horizontal flips65-67. For the U-Net segmentation work, a VGG-11 Encoder pre-477 

trained on ImageNet was used68-70. Predicted masks from the U-Net model were postprocessed 478 

using standard methods. In brief, the predicted masks were dilated to ensure a given boundary 479 

was fully connected, then opened to remove any small instances of detected noise. The cleaned 480 

masks were then skeletonized to obtain single-pixel thick boundaries for evaluation of metrics 481 

such as accuracy. Finally, a flat line-shaped structuring element was applied to dilate near the left 482 

and right edges to re-connect the boundaries with these edges. For the visualization in Fig. 4i, 483 

masks were dilated with a disk element for better visibility. 484 

 485 
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Figures 502 

 503 

 504 

 505 
 506 
 507 
 508 
Figure 1: Engineered P. mirabilis swarm patterns as spatiotemporal records. a. Wild type 509 
P. mirabilis cells undergo oscillatory swarming on solid agar to grow into a characteristic bullseye 510 
colony via elongation, hyperflagellation, and raft formation. P. mirabilis is engineered with an 511 
externally inducible genetic circuit driving swarming-related genes to modify the macroscale 512 
pattern output, which can then be decoded using quantitative methods to predict the input 513 
conditions.  b. Representative images of colony patterns formed by a strain containing a control 514 
circuit with green fluorescent protein (gfp) (top) compared to a circuit with the chemotaxis gene 515 
cheW (bottom), grown for 24 hours on agar supplemented with various IPTG concentrations. c. 516 
The cheW colony pattern is distilled into radially averaged pixel intensity profiles, with distinct 517 
peaks matching low-density ring boundaries when plotted as a heatmap or line plot. The blue line 518 
denotes the mean profile of the individual plates (each gray line represents one plate). d. 519 
Heatmaps of average cheW profiles at varying IPTG concentration (n = 5 plates at each condition 520 
except 1 mM IPTG (n = 6)). Colormap is on same scale for (c) and (d). e. Radii of the colonies 521 
plotted by IPTG concentration after 24 hours (filled circles) and calculated ring width (empty 522 
triangles), derived from Fourier analysis of the radially averaged profiles of individual images. The 523 
mean and standard error of the mean (SEM) are shown in black. f. A multinomial model was fit to 524 
the measurements in (e), with predicted IPTG concentration as the output variable. The model’s 525 
predictions for each plate shown in (e) are shown as a confusion matrix. Color reflects n per 526 
square (same as listed in (d); white squares represent 0). 527 
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Figure 2: Modulation of swarm genes in engineered P. mirabilis results in quantifiable 529 
changes to distinct spatial pattern features. a. Candidate genes involved in P. mirabilis 530 
swarming pathway were chosen for construction of inducible strains. The patterns in the presence 531 
of inducer were characterized by growth on IPTG-supplemented solid agar, then by specific 532 
feature measurements used to recover the inducer concentration. b. Characteristic patterns of 533 
engineered strains in the presence of IPTG and closeups of pattern features. c. For each induced 534 
strain, heatmaps and plots of radially averaged intensity profiles across the colony for the 535 
representative images in (b). d. Fourier transforms of the polar images visualize the magnitudes 536 
of the intensity frequencies of each induced strain. e-g. Quantification of aspects of colony 537 
patterns of engineered strains at increasing IPTG concentrations. All strains had at least n = 3 538 
plates measured at each IPTG concentration. Error bars represent standard error of the mean 539 
(SEM). Details can be found in Methods. e. Intensity of central region compared to total intensity 540 
of the Fourier transform of the polar image. f. Local radial coefficient of variation (CV), which 541 
increases with colony asymmetry. g. Change in intensity from the densest edge of the inoculum 542 
(innermost circular region of colony) to the low-density region immediately surrounding it, i.e., 543 
distinctness of the inoculum edge, where low values correspond to less distinct edges. h. Area 544 
under the curve (AUC) of multinomial regression models for predicting IPTG concentration, fit with 545 
specific pattern measurements for each strain.  546 
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 547 
 548 
Figure 3: Dynamics of engineered P. mirabilis pattern formation. a.  Time-lapse of P. mirabilis 549 
with inducible umoD expression or inducible gfp expression (control). Plates contained 20 mL 550 
1.3% agar with 10 mM IPTG.  b. Heatmap visualizations of swarming pattern development from 551 
center of plates (0 cm on left axis) to edge (top and bottom edges) for each image in the time-552 
lapses in (a). Radially averaged pixel intensity, a proxy for local colony density, at each location 553 
on plate is represented by heatmap color, with blue indicating least dense and yellow indicating 554 
most dense regions. Active regions and time periods of colony expansion via swarming are visible 555 
as faint blue diagonal edges. Consolidation phases appear as horizontal edges corresponding 556 
with increasing density (lighter colors) within the colony. c. Colony front distance from center 557 
plotted as a function of time for a single time-lapse of six plates. All plates contained 10 mM IPTG.  558 
d. Mean consolidation (filled bars, left) and swarm (outlined bars, right) phase lengths calculated 559 
from the trajectories in (d). e. Mean of the swarm speeds for each strain in the same time-lapse. 560 
f. Measurements of dynamic features at 0 vs 10 mM IPTG for the indicated strains. Each condition 561 
and strain was tested on at least n = 3 separate plates. All plots represent a significant difference 562 
between induced and uninduced conditions (p-values from a 2-sample t-test were 0.003, 2e-5, 563 
0.003 for the plots of umoD, cheW, and fliA respectively.) g. The local CV of the swarm front for 564 
a colony (averaged over all swarm phases each colony underwent, 3 phases at 0 and 1 and 4 565 
phases at 5 and 10 mM IPTG) at each given IPTG. Error bars in (f) and (g) represent SEM.  566 
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 567 
 568 
 569 
Figure 4: Multi-condition pattern encoding and deep-learning models for decoding. a. Dual 570 
input swarming strain with IPTG-inducible expression of cheW and arabinose-inducible 571 
expression of umoD. b. Representative images of colony patterns produced by the dual 572 
cheW/umoD strain in response to combinations of IPTG and arabinose. c. Heatmaps of radially 573 
averaged profiles of the patterns in (b) are shown. d-e. Mean colony area (calculated as percent 574 
of agar area in flattened image) and coefficient of variation for all plates (n>=14) at each 575 
combination of IPTG and arabinose. f. Confusion matrix for the InceptionV3 model’s accuracy of 576 
predicting combinations of IPTG and arabinose concentrations from endpoint patterns unseen 577 
during training. Total available images per class shown below matrix; an 80/20 train/test split was 578 
used. Numbers on matrix represent fraction of test images per true class. g. Visualization of the 579 
pixel attributions from the InceptionV3 model for representative, correctly-predicted images of 580 
each class. Darker orange represents higher weight of that pixel on the final prediction. h. 581 
Schematic of encoding of environmental changes within developing flgM pattern. i. Example 582 
patterns of the flgM strain grown with 10 mM IPTG and moved between the benchtop and 583 
incubator. Arrows mark boundaries between regions of the pattern formed in different conditions, 584 
i.e., the location of the colony edge at the time of a switch in conditions. j. Examples of the 585 
predicted boundary masks generated by the trained U-Net compared with ground truth 586 
annotations for the pattern images shown in (i), which were unseen during training.      587 
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