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WHAT YOU NEED TO KNOW

BACKGROUND AND CONTEXT

Cancer-associated fibroblasts (CAFs) regulate colorectal
cancer (CRC) progression. However, the cellular origin
of CAFs and how specific CAF lineages contribute to
CRC progression are unknown.

NEW FINDINGS

Colonic pericryptal leptin receptor (LepR)–lineage cells are
a major source of MCAMþ and ACTA2þ CAFs. These
MCAMþ CAFs accelerate CRC progression via nuclear
factor kB–IL34/CCL8–mediated tumor-associated
macrophage recruitment.

LIMITATIONS

This study was performed using mouse models and
human tissue samples. Future studies are necessary to
assess the therapeutic efficacy of targeting LEPR-
lineage MCAMþ CAFs in patients with CRC.

IMPACT

Inhibiting proliferation/differentiation of LEPRþ cells to
MCAMþ CAFs or targeting mature MCAMþ CAFs in
established cancer are novel potential therapeutic
strategies to treat CRC.
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BACKGROUND AND AIMS: Cancer-associated fibroblasts
(CAFs) play an important role in colorectal cancer (CRC) pro-
gression and predict poor prognosis in CRC patients. However,
the cellular origins of CAFs remain unknown, making it chal-
lenging to therapeutically target these cells. Here, we aimed to
identify the origins and contribution of colorectal CAFs asso-
ciated with poor prognosis. METHODS: To elucidate CAF ori-
gins, we used a colitis-associated CRC mouse model in 5
different fate-mapping mouse lines with 5-
bromodeoxyuridine dosing. RNA sequencing of fluorescence-
activated cell sorting–purified CRC CAFs was performed to
identify a potential therapeutic target in CAFs. To examine the
prognostic significance of the stromal target, CRC patient RNA
sequencing data and tissue microarray were used. CRC orga-
noids were injected into the colons of knockout mice to assess
the mechanism by which the stromal gene contributes to
colorectal tumorigenesis. RESULTS: Our lineage-tracing
studies revealed that in CRC, many ACTA2þ CAFs emerge
through proliferation from intestinal pericryptal leptin re-
ceptor (Lepr)þ cells. These Lepr-lineage CAFs, in turn, express
melanoma cell adhesion molecule (MCAM), a CRC stroma-
specific marker that we identified with the use of RNA
sequencing. High MCAM expression induced by transforming
growth factor b was inversely associated with patient survival
in human CRC. In mice, stromal Mcam knockout attenuated
orthotopically injected colorectal tumoroid growth and
improved survival through decreased tumor-associated
macrophage recruitment. Mechanistically, fibroblast MCAM
interacted with interleukin-1 receptor 1 to augment nuclear
factor kB–IL34/CCL8 signaling that promotes macrophage
chemotaxis. CONCLUSIONS: In colorectal carcinogenesis,
pericryptal Lepr-lineage cells proliferate to generate MCAMþ

CAFs that shape the tumor-promoting immune microenvi-
ronment. Preventing the expansion/differentiation of Lepr-
lineage CAFs or inhibiting MCAM activity could be effective
therapeutic approaches for CRC.
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Keywords: Colorectal Cancer; Tumor Microenvironment; Alpha-
Smooth Muscle Actin (aSMA); CD146.

olorectal cancer (CRC) is a leading cause of cancer-
* These authors contributed equally.

Abbreviations used in this paper: ACTA2, a-smooth muscle actin; AOM,
azoxymethane; BrdU, 5-bromodeoxyuridine; CAF, cancer-associated
fibroblast; CMS, consensus molecular subtype; CRC, colorectal cancer;
DSS, dextran sodium sulfate; FACS, fluorescence-activated cell sorting;
Lepr, leptin receptor; MCAM, melanoma cell adhesion molecule; RFP, red
fluorescent protein; scRNA-seq, single-cell RNA-sequencing; TAM, tu-
mor-associated macrophage; TCGA, The Cancer Genome Atlas; TGF-b,
transforming growth factor b.
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Crelated death. Cancer-associated fibroblasts (CAFs)
are histologically prominent and biologically important in
CRC initiation, progression, and metastasis.1 CAFs
contribute to carcinogenesis via secretion of growth factors,
cytokines, pro-angiogenic factors, and extracellular matrix.1

Recent studies using immunophenotyping and single-cell
RNA sequencing (scRNA-seq) have revealed that CAFs
contain heterogeneous subpopulations.2 It is now apparent
that distinct CAF populations have different consequences
on cancer growth. Some CAFs promote while others retard
cancer growth.3 The cellular origins of CAFs, whether pro-
moting or retarding, are poorly understood.1 Regarding the
development and consequences of CAFs on CRC growth,
there remain at least 3 unresolved questions. First, are CAFs
newly generated cells arising through proliferation, or
simply old cells acquiring a new phenotype? Second, if any
of the CAFs emerge through proliferation, what is their
cellular origin? And third, what CAF-derived factors
FLA 5.6.0 DTD � YGAST64732_proof �
promote cancer progression, and could those be targeted
with novel stromal therapies?

Theoretically, CAFs could arise through at least four
nonmutually exclusive mechanisms: proliferation, activa-
tion, transdifferentiation, and recruitment.1 Although
studies using autochthonous mouse models of cancers
have indicated that some CAFs undergo proliferation,4,5

the relative contribution of proliferating and non-
proliferating CAFs to the entire pool remains unclear.
Induced by factors such as transforming growth factor
(TGF) b,6 quiescent fibroblasts might undergo phenotypic
conversion into activated CAFs: an old cell, but with a new
mask (ie, activation). Third, several fate-mapping studies
have indicated that nonfibroblast lineage cells, such as
epithelial cells, could transdifferentiate into CAFs through
epithelial-to-mesenchymal transition (ie, trans-
differentiation).7 Finally, bone marrow transplantation
experiments have indicated that about 20% of ACTA2þ (a-
smooth muscle actin) CAFs were recruited from the bone
marrow in a mouse model of gastric cancer (ie, recruit-
ment).8 Human studies have also suggested that bone
marrow contribution can be detected in CAFs in several
27 December 2021 � 5:54 pm � ce
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neoplasias, including colorectal.9 Others, however, have
suggested that local precursors were a predominant
contributor to ACTA2þ CAFs.10 Thus, the origin of CAFs
remains uncertain. In contrast to fibrosis in organs such as
the liver, kidney, and skin, in which the origins of myofi-
broblasts have been extensively investigated,11 to our
knowledge, no previous CAF studies have comprehensively
performed lineage-tracing experiments to track the
aforementioned 4 possible CAF sources.

Leptin receptor (Lepr) is a well established marker for
perivascular mesenchymal cells, which support bone
marrow hematopoietic stem cell (HSC) maintenance.12

Previous fate-mapping studies have demonstrated that
Lepr-expressing cells give rise to bone and adipocytes
formed in the adult normal bone marrow13 as well as
myofibroblasts in primary myelofibrosis.14 However, the
significance of Lepr-lineage cells in the development of CAFs
is unknown.

Similar to Lepr, melanoma cell adhesion molecule
(MCAM; also known as CD146 and MUC18) is highly
expressed by perivascular stromal cells in the bone marrow
and has been suggested to be important in the HSC niche.15

MCAM is also expressed by endothelial cells, melanoma
cells, pericytes, and CAFs.16,17 MCAM expressed in endo-
thelial and melanoma cells contributes to cancer progres-
sion by promoting cancer cell growth, angiogenesis, and
metastasis.17,18 Recently, scRNA-seq analyses have revealed
that MCAM defines a subset of pericyte-like CAFs that
secrete tumor-promoting immunomodulatory cytokines in
human cholangiocarcinoma and breast cancer.19,20 The
biological role of MCAMþ CAFs, however, has been poorly
defined in CRC.

This study, for the first time, comprehensively ad-
dresses the cellular origins, dynamics, and consequences of
specific CAFs in CRC. Using lineage tracing, we identify
intestinal pericryptal Lepr-lineage cells as a major source
of proliferating CAFs in a mouse model of CRC. Next, by
combining fluorescence-activated cell sorting (FACS), RNA-
seq, and immunohistochemistry, we show these CAFs ex-
press MCAM. We investigate the clinical significance of
MCAM expression with the use of RNA-seq data and tissue
microarray from human CRC samples. Finally, we uncover
the mechanism of stromal MCAM action in CRC with the
use of newly generated Mcam-null mice and mouse
colonoscopy.
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Materials and Methods
Statistical Analysis

Comparison of 2 groups was performed using 2-tailed un-
paired t tests or Mann-Whitney U tests. For multiple compari-
sons, we used analysis of variance or Kruskal-Wallis test. For
survival analyses, Kaplan-Meier survival estimation with a log-
rank (Mantel-Cox) test was performed. Statistical analyses were
conducted with the use of GraphPad Prism 8.00 or SPSS Sta-
tistics 25. P values of <0.05 were considered to be statistically
significant.
FLA 5.6.0 DTD � YGAST64732_proof �
For all other materials and methods, see the Supplementary
Materials.
Results
Desmoplasia Is Increased During Colorectal
Carcinogenesis in Humans and Mice

To explore whether desmoplasia is increased during
colorectal carcinogenesis and to identify a suitable mouse
model to investigate this, we performed immunohisto-
chemistry for ACTA2, a well established marker for CAFs, in
human colorectal samples. The ratio of ACTA2þ fibroblasts
in the total stromal cells increased from normal to low-
grade adenoma to high-grade adenoma, and ultimately
adenocarcinoma (Figure 1A and B). The elevated ACTA2
expression level during colorectal carcinogenesis was
corroborated by an analysis of expression microarray data
from human colorectal tissues (Supplementary Figure 1A).
Analyses of scRNA-seq data from human CRC tissues2 also
demonstrated that ACTA2 expression is increased in CAFs
compared with normal fibroblasts, with the highest ACTA2
transcripts observed in pericytes among various CAF sub-
populations (Figure 1C; Supplementary Figure 1B and C).

Next, we investigated the prognostic significance of
ACTA2 expression in The Cancer Genome Atlas (TCGA) data.
High ACTA2 expression was inversely associated with
overall survival in patients with CRC (Figure 1D). High
ACTA2 expression, as well as high expression of FAP, an
activated fibroblast marker,1 was consistently associated
with poor prognosis across multiple expression datasets
from CRC patients (Supplementary Figure 2). The highest
ACTA2 expression was observed in the poor-prognosis
stroma-rich molecular subtype of CRC (consensus molecu-
lar subtype [CMS] 4)21 (Figure 1E).

We then sought to explore whether ACTA2þ fibroblasts
are similarly increased in mouse models of CRC. To this end,
we performed ACTA2 immunohistochemistry with the use
of tumors from the azoxymethane (AOM)/dextran sulfate
sodium (DSS) (Figure 1F and G) and ApcMin/þ mouse
models. In line with a previous study,22 ACTA2 expression
was significantly elevated in the stroma of AOM/DSS tumors
compared with the adjacent normal mucosa (Figure 1H and
I). Similarly, small intestinal tumors from ApcMin/þ mice
showed an increase in stromal ACTA2 expression compared
with the adjacent normal tissue, but to a lesser extent than
the AOM/DSS mouse model (Supplementary Figure 3).
Taken together, these data suggest that ACTA2þ fibroblast
number increases throughout colorectal carcinogenesis in
humans, and this is recapitulated in the AOM/DSS mouse
model of CRC.
A Subpopulation of CRC CAFs Arises Through
Proliferation in Humans and Mice

We next addressed the question of whether CAFs
emerge through cell division or simply increase ACTA2
27 December 2021 � 5:54 pm � ce
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expression in existing cells. Co-staining for ACTA2 and Ki67
with the use of human colorectal samples revealed that the
percentage of ACTA2 and Ki67 double-positive cells (ie,
proliferating ACTA2þ CAFs) was increased in high-grade
adenoma and adenocarcinoma compared with normal
colorectal mucosa, with about 10% of ACTA2þ CAFs marked
by Ki67 in adenocarcinoma (Figure 2A and B). Analysis of
scRNA-seq data from human CRC and normal mucosa2

confirmed that a subcluster of ACTA2þ CAFs expressed
MKI67, and this co-expressing population was not found in
fibroblasts from the normal mucosa (Supplementary
Figure 4). These data suggest that human CRC CAFs un-
dergo mitosis during malignant progression.

Ki67 only temporarily marks actively cycling cells, so
our analysis of proliferation of human CRC CAFs may un-
derestimate CAFs that divided at an earlier time point. To
capture the entire population of CAFs that underwent
proliferation during carcinogenesis, we took advantage of
continuous 5-bromodeoxyuridine (BrdU) labeling in the
AOM/DSS mouse model. After the last course of DSS/water
treatment (5-day DSS treatment followed by a 16-day re-
covery period with normal drinking water), BrdU dosing
commenced at the onset of observable tumors (Figure 2C).
The ratio of ACTA2þ fibroblasts that incorporated BrdU was
significantly elevated in AOM/DSS tumors compared with
the adjacent nonneoplastic colon, with approximately 75%
of ACTA2þ fibroblasts in AOM/DSS tumors marked by BrdU
(Figure 2D and E; Supplementary Figure 5). Colonoscopic
and microscopic evaluation of AOM/DSS tumors confirmed
the absence of excavated ulcers or severe inflammation at
the time point when BrdU labeling started (Figure 2C;
Supplementary Figure 6). These data indicate that ACTA2þ

fibroblasts have divided during AOM/DSS tumorigenesis,
after DSS-induced acute colitis subsided. Contrasting with
the BrdU incorporation ratio, the ratio of actively prolifer-
ating fibroblasts (Ki67þACTA2þ fibroblasts) in the total
pool of ACTA2þ fibroblasts was only about 1.5% in AOM/
DSS tumors and was not significantly different from the
ratio of proliferating fibroblasts in the normal mouse
colorectal mucosa (Figure 2D and E). Collectively, our data
suggest that, in AOM/DSS tumors, the majority of ACTA2þ

fibroblasts at humane end point were in quiescent G0 phase
as evaluated by Ki67 negativity, but approximately three-
fourths of the fibroblasts had undergone cell division and
=
Figure 1. ACTA2 expression is increased during colorectal carc
(IHC) for ACTA2 in human colorectal samples. (A) Representative
by hematoxylin counterstaining). Three HPFs (�400)/patient, 4–
normal fibroblasts (n ¼ 2053 cells) and CRC CAFs (n ¼ 1854 cell
seq) from human colorectal tissues. (D) Kaplan-Meier survival c
plots showing ACTA2 expression level in 4 consensus molecula
4). (F) Scheme for the experimental course of azoxymethane (A
nogenesis. (G) Representative endoscopic images of the nor
Immunohistochemistry for ACTA2 in the normal mucosa and A
itivity in total stromal cells. 3 HPFs/mouse, 3 mice each. One-w
comparison test (B), Wilcoxon rank-sum test (C), log-rank test
sons test (E), and 2-tailed unpaired Student t test (I): ****P < 0.00
of maximum and minimum values; the boxes represent interqua
lines denote median and quartiles, respectively. ACTA2, a-
associated fibroblast ; CRC, colorectal cancer; DSS, dextran su

FLA 5.6.0 DTD � YGAST64732_proof �
incorporated BrdU during colitis-associated tumorigenesis
after the last DSS/recovery cycle.
Lepr-Lineage Stromal Cells Are a Major
Contributor to the Proliferating Fibroblasts in
AOM/DSS CRC

We next sought to establish the cellular origin of the
proliferating fibroblasts in AOM/DSS tumors by using a
lineage-tracing strategy. We selected transgenic mouse lines
that 1) identified putative colorectal mesenchymal stem-
progenitor cells (Lepr-Cre; Rosa26-LSL-tdtomato,12 Grem1-
CreERT2; Rosa26-LSL-ZsGreen23 and Islr-CreERT2; Rosa26-
LSL-tdtomato3), 2) labeled epithelium (Krt19-Cre; Rosa26-
mt/mG), or 3) marked bone marrow–derived cells through a
combination of bone marrow from Acta2–red fluorescent
protein (RFP) mouse transplanted into non-RFP recipients
(Figure 3). These fate-mapping experiments were coupled
withBrdU labelingbeginning at theonset of observable tumors
after the last DSS/recovery cycle (Figure 2C). Tamoxifen was
administered to the inducible Cre lines at postnatal day 6.

Immunofluorescence for EPCAM, a pan-epithelial cell
marker, showed that all Lepr-, Grem1-, and Islr-lineage cells
were observed only within the EPCAM� stroma, validating
their mesenchymal identity (Figure 3A). In AOM/DSS tumors,
approximately one-half of ACTA2þ fibroblasts and 75% of
proliferating BrdUþACTA2þ fibroblasts were Lepr-lineage-
positive, with a smaller proportion of ACTA2þ fibroblasts
derived from the Grem1-lineage and Islr-lineage (Figure 3A
and C–E). Lepr-lineage cells represented about 47.1% and
17.4% of the total PDGFRAþ

fibroblasts in the AOM/DSS
tumors and normal colons, respectively (Supplementary
Figure 7). Together, these results suggest that Lepr-lineage
stromal cells are a major source of proliferating ACTA2þ fi-
broblasts during AOM/DSS carcinogenesis.
Lepr-Lineage Cells Contribute to ACTA2þ

Proliferating CAFs in a CRC Organoid
Transplantation Model

We next asked whether Lepr-lineage cells also give rise to
proliferating ACTA2þ CAFs in a distinct model of CRC. To this
end,wecolonoscopically injectedApcD/D,KrasG12D/D, Trp53D/D

mouse CRC organoids (hereafter termed AKP tumoroids) into
inogenesis in humans and mice. (A, B) Immunohistochemistry
pictures. (B) ACTA2 positivity in total stromal cells (visualized
5 patients each. (C) Violin plots depict ACTA2 transcripts in
s) assessed by means of single-cell RNA sequencing (scRNA-
urves in The Cancer Genome Atlas (TCGA) data set. (E) Violin
r subtypes (CMSs). n ¼ 76, 220, 72, and 143 patients (CMS1–
OM)/dextran sulfate sodium (DSS)–induced colorectal carci-
mal colon mucosa and AOM/DSS tumors. T, tumor. (H, I)
OM/DSS tumors. (H) Representative pictures. (I) ACTA2 pos-
ay analysis of variance followed by Tukey’s post hoc multiple
(D), Kruskal-Wallis test followed by Dunn’s multiple compari-
01 Q1; *P ¼ 0.0451. Scale bars, 50 mm. Box plots have whiskers
rtile range and median. In violin plots, solid and dotted black
smooth muscle actin; AOM, azoxymethane; CAF, cancer-
lfate sodium; HPF, high-power field.
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the colons of Lepr-Cre; Rosa26-LSL-tdtomato mice
(Supplementary Figures 8 and 9A). Continuous BrdU dosing
commenced 1 day after tumoroid transplantation. In this
model, approximately 72% of ACTA2þ CAFs underwent pro-
liferation as assessed by BrdU positivity (Supplementary
Figure 9B and C). Similarly to our findings with the AOM/
DSS model, Lepr-lineage cells were a major contributor to
BrdUþACTA2þ CAFs in this model, with 53% of the prolifer-
ating CAFs derived from Lepr lineage (Supplementary
Figure 9B–E). Our Lepr-lineage tracing data from colitis-
associated and sporadic CRC models suggest that the major-
ity of proliferating ACTA2þ CAFs in CRC originate from Lepr-
lineage cells.
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Neither Epithelium nor Bone Marrow Recruitment
Contributed to ACTA2þ CAFs in the AOM/DSS
Mouse Model of CRC

We explored whether colonic epithelial cells could un-
dergo epithelial-mesenchymal transition into colorectal
CAFs. For this purpose, we used constitutive Krt19-Cre;
Rosa26-mt/mG mice to track the fate of Krt19-lineage
colonic epithelial cells. All colonic cells with epithelial
morphology were marked after reporter recombination by
Cre recombinase driven by the Krt19 promoter (Figure 3B).
However, no Krt19-lineage cells were positive for ACTA2 in
either normal colon or AOM/DSS tumors (Figure 3B and D).
This suggests that, at least in this mouse model of CRC, the
epithelium is not a source of ACTA2þ CAFs.

Next, to assess the contribution of bone marrow–derived
cells to the AOM/DSS tumor stroma, we performed bone
marrow transplantation experiments with the use of an
Acta2-RFP reporter mouse as a donor. Initially, we validated
that, in Acta2-RFP mice that did not undergo bone marrow
transplantation, RFP was expressed by fibroblastic cells in
AOM/DSS tumors, confirming that the Acta2 promoter is
active in this CRC mouse model (Supplementary Figure 10).
To perform bone marrow transplantation from Acta2-RFP
mice, wild-type recipient mice were subjected to total body
irradiation and transplanted with whole bone marrow cells
from Acta2-RFP donor mice. Then, the mice were treated
with AOM/DSS to induce colorectal tumors (Supplementary
Figure 11A). Quantitative polymerase chain reaction for RFP
with the use of genomic DNA isolated from the bone
marrow of the recipient mice confirmed engraftment of
RFPþ cells in the recipient bone marrow (Supplementary
Figure 11B). Transplanted Acta2-RFPþ cells were also
observed in the small intestine of the wild-type recipients,
further validating the engraftment (Supplementary
Figure 11C). However, no bone marrow–transplanted
=
Figure 2. A subset of ACTA2þ CAFs proliferate during co
immunofluorescence for ACTA2 and Ki67 in human colorect
denote proliferating CAFs (ACTA2þKi67þ cells). (B) Ki67 posit
patients each. (C) Scheme for the experimental course of AOM/
After the end of the last DSS/water cycle, continuous BrdU admi
via mouse colonoscopy. T, tumor. (D, E) Co-immunofluorescenc
AOM/DSS tumors. (D) Representative images. Blue and yellow
respectively. (E) BrdU positivity (left) and Ki67 positivity (right)
Wallis test followed by Dunn’s multiple comparisons test (B) a
0.0077; ns, P ¼ 0.0857. Scale bars, 50 mm. BrdU, 5-bromodeo

FLA 5.6.0 DTD � YGAST64732_proof �
RFPþ cells were observed in AOM/DSS tumors in wild-
type recipient mice (Figure 3B and D). This indicates that,
at least in this experimental CRC model, CAFs did not arise
via recruitment from the bone marrow, but only from local
precursors.

Collectively, our data with 5 distinct genetically engi-
neered mouse models suggest that tissue-resident Lepr-
lineage stromal cells are a key contributor to the ACTA2þ

CAFs in AOM/DSS tumors.

Lepr-Lineage Intestinal Stromal Cells Undergo
Proliferation and Differentiation Into ACTA2þ

CAFs During AOM/DSS Carcinogenesis
We next sought to characterize Lepr-lineage cells in the

normal colon and AOM/DSS tumors. In the normal colonic
mucosa, pericryptal Lepr-lineage cells were preferentially
located near the base of the crypts (Figure 3F and G). Lepr-
lineage stromal cells in AOM/DSS tumors exhibited higher
ACTA2 positivity than Lepr-lineage stromal cells in the
normal mucosa, indicating that Lepr-lineage cells underwent
phenotypic conversion into ACTA2þ CAFs during carcino-
genesis (Supplementary Figure 12A and B). BrdU labeling in
AOM/DSS-treated mice revealed that Lepr-lineage cells
showed higher proliferation in AOM/DSS tumors compared
with the adjacent normal mucosa (Supplementary
Figure 12C and D). Single-molecule fluorescent RNA in situ
hybridization for Lepr revealed that active expression of
Lepr in Lepr-lineage cells was reduced in the AOM/DSS tu-
mor compared with the normal colon (Supplementary
Figure 12E and F). Together, these findings indicate that
intestinal Lepr-lineage stromal cells undergo expansion and
differentiation to ACTA2þ myofibroblasts at the expense of
Lepr expression during AOM/DSS colorectal carcinogenesis.

Identification of MCAM as a CRC Stroma-
Specific Marker That Defines a Subset of Lepr-
Lineage Proliferating CAFs.

Lower Lepr expression in the CRC mesenchyme could
potentially make it challenging to therapeutically target
Lepr-lineage CAFs based on active Lepr expression in
established cancers. Therefore, we next aimed to identify a
stromal factor that is actively expressed in the CRC
mesenchyme as a potential therapeutic stromal target to
treat CRC.

As a strategy to identify the most biologically relevant
stromal targets, we were inspired by the parallels between
cancer and developmental biology.24,25 For example, factors
involved in fibroblast activation (eg, TGF-b) and inflamma-
tion (eg, nuclear factor (NF) kB) play crucial roles in both
lorectal carcinogenesis in humans and mice. (A, B) Co-
al samples. (A) Representative pictures. Yellow arrowheads
ivity in total ACTA2þ cells. Three HPFs (�400)/patient, 4–5
DSS-induced colon carcinogenesis and BrdU administration.
nistration was commenced once a visible tumor was observed
e for ACTA2, BrdU, and Ki67 in the normal colon mucosa and
arrowheads denote ACTA2þBrdU� and ACTA2þBrdUþ cells,
in total ACTA2þ cells. 3 HPFs/mouse, 3 mice each. Kruskal-
nd 2-tailed unpaired Student t test (E): ****P < 0.0001; **P ¼
xyuridine; other abbreviations as in Figure 1.
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carcinogenesis and organ development.1,25,26 Therefore, we
decided to triangulate the fibroblastic factors that were
significantly up-regulated in both tumorigenesis and devel-
opment compared to adult colonic fibroblasts.

We first sorted fibroblasts using a negative selection
strategy. Fibroblasts were selected based on their lack of
expression of blood cell markers (CD45 and Ter119), an
endothelial marker (CD31), and an epithelial marker
(EPCAM) from AOM/DSS tumors, developmental colon
(postnatal day 14), and normal adult colon (Figure 4A).
Fibroblast markers such as Grem1, Acta2, and Fap were
highly expressed in the FACS-sorted mesenchymal cells
(CD45�, Ter119�, CD31�, EPCAM�), validating their
enrichment for fibroblasts (Supplementary Figure 13).
RNA-seq from the FACS-purified fibroblasts revealed that
342 genes were differentially up-regulated in both the
AOM/DSS tumors and the early postnatal colons compared
with the normal adult colon fibroblasts (Figure 4B, step 1).
Next, we analyzed the prognostic significance of these 342
genes by performing survival analysis with the use of TCGA
data, resulting in the selection of 46 genes that were
associated with human CRC survival (Figure 4B, step 2;
Supplementary Table 1). Next, to focus on stroma-specific
targets, using our RNA-seq data from normal adult colon
and AOM/DSS tumors, we selected 18 stroma-specific
genes that were up-regulated in fibroblasts compared
with epithelial cells (Figure 4B, step 3; Supplementary
Table 1). Then, to examine for genes expressed at the
protein level in human CRC stroma, we interrogated hu-
man CRC immunohistochemistry data in the Human Pro-
tein Atlas database and selected 6 proteins that were
highly expressed in the CRC stroma (Figure 4B, step 4;
Supplementary Figure 14). Finally, our immunohisto-
chemistry data for candidate genes showed that MCAM was
the only candidate that was consistently up-regulated in
the stroma of AOM/DSS tumors and the developmental
colon compared with the normal adult colon (Figure 4C
and D; Supplementary Figure 15).

Next, we explored the stromal MCAM expression in hu-
man and mouse colorectal tissues. Analyses of scRNA-seq
from human CRC tissues2 and ulcerative colitis samples
revealed that the high MCAM expression was observed in
pericytes compared with other cell subpopulations such as
=
Figure 3. Proliferating ACTA2þ fibroblasts in AOM/DSS tumor
fluorescence for ACTA2 and EPCAM (a pan-epithelial cell marke
use of fate-mapping mouse models. Yellow arrowheads denote
Rosa26-loxP-stop-loxP; BM, bone marrow; BMT, bone marro
fluorescent protein; TAM, tamoxifen. (B) Immunofluorescence
Krt19-Cre mice (left). Immunofluorescence for ACTA2 and EPCA
recipient mouse transplanted with bone marrow cells from an A
and BrdU in AOM/DSS tumors in the BrdU-treated fate-mapping
that were derived from each cellular lineage (lineage-markerþA
total ACTA2þ cells. 4 HPFs/mouse. n ¼ 3 mice (Lepr-Cre, Grem
Cre). (E) The ratios of lineage markerþ cells in total proliferating C
Lepr-lineage stromal cells in the normal adult mouse colon. (F) R
tdtomatoþ cells. (G) Violin plots showing the positions of pericryp
position. n ¼ 81 Lepr-lineage cells from 3 mice. Scale bars, 50 m
Kruskal-Wallis test followed by Dunn’s multiple comparisons tes
leptin receptor; other abbreviations as in Figures 1 and 2.

FLA 5.6.0 DTD � YGAST64732_proof �
endothelial cells, epithelial cells, and immune cells
(Supplementary Figure 16A and B). In AOM/DSS tumors, co-
immunofluorescence for CD31, ACTA2, CD45, and EPCAM
showed that approximately 45% of MCAMþ cells expressed
a pericyte/CAF marker, ACTA2 (Supplementary Figure 16C
and D).

To characterize the cellular sources of MCAMþ CAFs in
CRC, we performed immunofluorescence for MCAM in the 3
mesenchymal fate-mapping mouse models (Lepr-Cre,
Grem1-CreERT2, and Islr-CreERT2 mice). Our data revealed
that about 80% of MCAMþACTA2þ CAFs were derived from
the Lepr lineage in AOM/DSS tumors (Figure 4E;
Supplementary Figure 17). We also co-stained MCAM and
BrdU in AOM/DSS-treated mice that were administered
BrdU during carcinogenesis. In keeping with previous
scRNA-seq data showing that Mcam was highly expressed
by a proliferative subpopulation of CAFs,5 more than half of
the MCAMþ cells were positive for BrdU, indicating that the
majority of MCAMþ cells arose through proliferation
(Figure 4F and G). Collectively, these data indicate that
MCAM identifies Lepr-lineage proliferating CAFs in AOM/
DSS tumors.
Increased MCAM Expression Is Associated With
CMS4 and Predicts Poor Survival in Patients With
CRC

We investigated the clinical significance of MCAM
expression in CRC patients. Consistent with the observed up-
regulation of MCAM during mouse colorectal tumorigenesis,
MCAM expression was increased in the human adenoma-
carcinoma sequence (Figure 5A and B). Analyses of expres-
sion microarray data from human colorectal tissues also
showed that MCAM transcripts were elevated during colo-
rectal carcinogenesis (Supplementary Figure 18A and B).
Furthermore, scRNA-seq data from human colorectal tissues2

demonstrated that, among fibroblast subpopulations, MCAM
expression was increased in pericytes during carcinogenesis
(Supplementary Figure 18C and D).

Analyses of the TCGA data set showed that the highest
expression of MCAM was observed in poor-prognosis
immunosuppressive CMS4 tumors (Figure 5C). Given that
TGF-b signaling activation is a defining characteristic of
s derive predominantly from Lepr-lineage cells. (A) Immuno-
r) in the normal colon mucosa and AOM/DSS tumors with the
lineage-markerþACTA2þ cells. See (D) for quantification. R26,
w transplantation; GFP, green fluorescent protein; RFP, red
for ACTA2 in the normal mucosa and AOM/DSS tumors in
M in the normal mucosa and AOM/DSS tumor, in a wild-type
cta2-RFP mouse (right). (C) Immunofluorescence for ACTA2
mouse models. Yellow arrowheads denote proliferating CAFs

CTA2þBrdUþ cells). (D) The ratios of lineage-markerþ cells in
1-CreERT2, Islr-CreERT2, Acta2-RFP) and n ¼ 2 mice (Krt19-
AFs. 4 HPFs/mouse. 3 mice each. (F, G) Cellular positions of

epresentative pictures. White arrowheads denote Lepr-lineage
tal Lepr-lineage stromal cells relative to the adjacent epithelial
m. Two-tailed unpaired t test with Welch’s correction (D) and
t (E): ****P < 0.0001; **P ¼ 0.0030 (D); **P ¼ 0.0043 (E). Lepr,
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CMS4 CRC,21 we reasoned that TGF-b might up-regulate
MCAM expression. In keeping with our hypothesis, stimu-
lation of a mouse colonic fibroblast cell line, YH2 cells, with
recombinant TGF-b1 enhanced Mcam transcript levels and a
TGF-b target gene, Acta2 (Figure 5D). This was rescued by
co-treatment with galunisertib, a specific inhibitor for TGF-b
receptor 1. Consistent herewith, scRNA-seq analysis of hu-
man colorectal CAFs,2 as well as bulk CRC tissue analysis of
TCGA and expression microarray data, showed positive
correlations between MCAM and ACTA2 expression
(Figure 5E; Supplementary Figure 19).

Next, to confirm the clinical association between MCAM
expression and survival, we performed MCAM immunohis-
tochemistry with the use of tissue microarrays from our
own independent cohort of 101 CRC patients. Consistently
with a previous paper,27 high MCAM expression was an
independent prognostic factor for poor overall survival in
CRC patients (Figure 5F and G; Supplementary Tables 2 and
3). Moreover, analyses of 4 independent CRC data sets
confirmed that high MCAM expression was inversely asso-
ciated with survival (Supplementary Figure 20). Taken
together, these data indicate that high MCAM expression
driven, at least in part, by TGF-b predicts poor prognosis in
human CRC.

Genetic Deletion of Stromal Mcam Inhibits
Colorectal Tumorigenicity and Improves Survival
via Decreased NF-kB–IL34/CCL8–Mediated
Macrophage Recruitment

Finally, to delineate the mechanism by which MCAM
contributes to CRC progression, we generated Mcam-
knockout mice by means of CRISPR/Cas9-mediated genome
engineering (Supplementary Figure 21A) and colonoscopi-
cally injected luciferase-expressing AKP tumoroids into the
colons of Mcam-knockout and wild-type mice (Figure 6A). In
this mouse model, more than half of MCAMþ cells were
ACTA2þ CAFs (Supplementary Figure 21B and C). Consis-
tently with our earlier MCAM expression and survival ana-
lyses from human CRC, Mcam-knockout mice showed
=
Figure 4. Identification of MCAM as a CRC mesenchyme–specifi
cells. (A) Experimental schematic for isolating colonic fibroblasts
day 14 colon. Gating strategy to isolate CD45�Ter119�CD31
(FACS) is shown for 1 mouse adult normal colon. n ¼ 4 mice eac
in development and carcinogenesis, which is associated with h
regulated in AOM/DSS tumors and postnatal day 14 colon com
using The Cancer Genome Atlas (TCGA) data set. (3) U
EPCAM�CD31�CD45�Ter119� fibroblasts compared with EPCA
tumors, were selected. Mean ± SEM. (4) The Human Protein At
was restricted to the CRC stroma. Mcam is highlighted in red.
tative images. Blue, red, and green arrowheads denote MCAM
postnatal day 14 colon, respectively. (D) The ratios of MCAMþ c
counterstaining). 3 HPFs/mouse, 3 mice each. (E) Co-Immunofl
tumors from Lepr-Cre; Rosa26-tdtomato mice. Yellow arrow
Supplementary Figure 17C and D for quantification and separa
and BrdU. (F) Representative images. Yellow arrowheads deno
cells in total MCAMþ cells. 3 HPFs/mouse, 2–3 mice each. Scal
followed by Tukey’s post hoc multiple comparison test (B(3) an
MCAM, melanoma cell adhesion molecule; other abbreviations
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prolonged survival after tumoroid injection (Figure 6B).
Mcam-knockout mice also demonstrated reduced tumoroid-
derived luciferase signals according to in vivo imaging sys-
tem, decreased tumor volumes, and colonoscopic tumor
scores (Figure 6C–F; Supplementary Figure 22A and B). In
keeping with this, tumors from Mcam-knockout mice
showed reduced histologic tumor area and Ki67 labeling
(Supplementary Figure 22C–F).

Immunohistochemistry for various immune cell markers
revealed that infiltration of CD68þmacrophages and CD11bþ

myeloid-derived cells was decreased in tumors from Mcam-
knockout mice (Figure 6G and H). This was accompanied by
decreased FOXP3þ regulatory T cells and increased CD8þ

cytotoxic T cells in Mcam-knockout mice (Supplementary
Figure 23A and B). In our mouse model, we did not observe
alterations in CD31þ vasculature density or ACTA2þCAF area
by Mcam knockout (Supplementary Figure 23C–F). Normal
adult colons fromMcam-knockout mice did not show altered
Ki67 labeling or crypt density or length (Supplementary
Figure 24). This suggests that, in Mcam-knockout mice,
there are no pre-existing changes in normal colon morpho-
genesis that lead to the altered tumor size.

Consistent with our mouse immunophenotyping data,
gene set enrichment analysis with the use of TCGA data
revealed positive enrichment of macrophage/monocyte
chemotaxis genes in MCAMhigh cancers compared with
MCAMlow tumors (Supplementary Figure 25). We hypothe-
sized that MCAMþ CAFs might promote tumor-associated
macrophage (TAM) recruitment, contributing to the immu-
nosuppressive tumor microenvironment. To identify
macrophage/monocyte chemoattractants secreted by
MCAMþ CAFs, we first performed differential gene expres-
sion analysis with the use of scRNA-seq data from human
CRC2 and found that 462 genes were up-regulated in
MCAMhigh CAFs compared with MCAMlow CAFs (Figure 6I).
Next, using gene ontologies, we examined transcripts
encoding cytokines and chemokines involved in macro-
phage/monocyte chemotaxis. This analysis identified IL34
and CCL8 as genes with roles in TAM recruitment that are
up-regulated in MCAMhigh CAFs.
c marker that represents a subset of Lepr-lineage proliferating
from the normal adult colon, AOM/DSS tumors, and postnatal
�EPCAM�

fibroblasts by fluorescence-activated cell-sorting
h. (B) Strategy to identify a colonic stromal gene up-regulated
uman CRC survival. (1) Venn diagram showing 342 genes up-
pared with normal adult colon fibroblasts. (2) Survival analysis
sing our RNA sequencing data, genes up-regulated in
Mþ epithelial cells, in both normal adult colon and AOM/DSS
las data were used to select genes whose protein expression
(C, D) Immunohistochemistry (IHC) for MCAM. (C) Represen-
expression in the normal adult colon, AOM/DSS tumor, and
ells in total stromal cells (visualized by means of hematoxylin
uorescence for MCAM and ACTA2 with the use of AOM/DSS
heads denote Lepr-lineage MCAMþ ACTA2þ CAFs. See

te channel images. (F, G) Co-immunofluorescence for MCAM
te proliferating MCAMþ cells. (G) The ratio of MCAMþBrdUþ

e bars, 50 mm. Log-rank test (B(2)), 1-way analysis of variance
d D), and 2-tailed unpaired Student t test (G): ****P < 0.0001.
as in Figures 1–3.
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Next, to assess whether MCAM could promote IL34 and
CCL8 expression, we overexpressed MCAM in YH2 cells by
means of lentiviral transduction and stimulated MCAM-YH2
cells with recombinant interleukin (IL) 1b, which is known
to induce IL34 and CCL8 expression in fibroblasts.28,29 As
expected, IL1b–treated MCAM-YH2 cells showed decreased
IkBa expression, increased phosphorylation of NF-kB (p65),
and enhanced luciferase signals from NF-kB–responsive el-
ements, leading to up-regulation of Il34 and Ccl8 (Figure 6J-
L; Supplementary Figure 26). These alterations were
rescued by co-treatment with IKK16, a selective inhibitor
for IkB kinase. We reasoned that MCAM might act as a co-
receptor for IL1b receptor, IL1R1, to potentiate IL1b–NF-
kB–IL34/CCL8 signaling. To this end, we lentivirally trans-
duced YH2 cells with MCAM-hemagglutinin (HA) epitope tag
or, as a control, mScarlet-HA, and performed immunopre-
cipitation with an anti-HA antibody. The co-
immunoprecipitation revealed that MCAM interacted with
IL1R1 (Figure 6M). Reciprocal co-immunoprecipitation of
MYC-tagged IL1R1 with the use of an anti-MYC antibody
verified the interaction of IL1R1 with MCAM
(Supplementary Figure 27). In line with our in vitro data,
tumors from Mcam-knockout mice showed lower stromal
expression of Il34 and Ccl8 (Figure 6N and O), accompanied
by decreased NF-kB phosphorylation (Supplementary
Figure 28). In human CRC, TCGA and expression micro-
array data confirmed that MCAM expression was positively
correlated with IL34 and CCL8, as well as CD68 and ITGAM
(CD11b) expression (Supplementary Figure 29). Collec-
tively, our data indicate that MCAM alters the immune
microenvironment and accelerates CRC progression
through, in part, increased TAM recruitment mediated by
IL1R1–NF-kB–IL34/CCL8 signaling.
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Discussion

In this study, we have shown that about 75% of ACTA2þ

CAFs in CRC were generated through proliferation, with the
remaining 25% acquired through new or preserved ACTA2
expression in existing fibroblasts (ie, activation). Most
proliferating ACTA2þ CAFs were derived from intestinal
Lepr-lineage stromal cells. These Leprþ pericryptal fibro-
blasts are also the chief origin of proliferating MCAMþ CAFs.
High stromal MCAM expression is associated with poor
clinical outcomes in patients with CRC. Furthermore,
=
Figure 5. High stromal MCAM expression driven, in part, by trans
in patients with CRC. (A, B) Immunohistochemistry (IHC) for MC
(B) MCAM positivity in total stromal cells (visualized by hemat
each. (C) Violin plots showing MCAM expression levels in 4 CM
Cancer Genome Atlas. (D) A mouse colonic fibroblast cell line
recombinant TGF-b1 þ TGF-b1 receptor inhibitor (galunisertib
polymerase chain reaction. Mean ± SEM. n ¼ 3. DMSO, dime
MCAM transcript levels are positively correlated with ACTA2 ex
regression. (F, G) MCAM IHC in a CRC tissue microarray (F) R
survival curves. Scale bars, 50 mm. Kruskal-Wallis test follow
analysis of variance followed by Tukey’s post hoc multiple com
(G): ****P < 0.0001; *P ¼ 0.0124. Abbreviations as in Figures 1

FLA 5.6.0 DTD � YGAST64732_proof �
transgenic knockout of Mcam in the colorectal tumor
microenvironment limits tumor growth and improves sur-
vival by modifying TAM recruitment and immune land-
scapes. These data suggest that MCAM, a prominent cell
surface protein, could prove to be a valuable novel stromal
target in the prevention and treatment of CRC.

Several studies have indicated that recruitment from the
bone marrow could contribute to CAFs in mouse models of
cancers such as gastric and breast cancer.8,30 In contrast, one
paper demonstrated that no Acta2-RFPþ CAFs were detected
in small intestinal tumors developed in a parabiosis study of
an ApcMin/þ with an Acta2-RFP mouse.10 In agreement with
this, we found that no ACTA2þ CAFs were derived from the
bone marrow in an AOM/DSS model of CRC. To our knowl-
edge, our study is the first to examine bone marrow contri-
bution to CAFs in tumors in the mouse colon. Human studies
using secondary tumors (including colorectal neoplasias)
developed after sex-mismatched bone marrow trans-
plantation also indicated that bone marrow–derived cells are
not a major contributor to ACTA2þ CAFs.9,31 It is plausible,
and indeed likely, that the origins and contributions of CAFs
are context dependent, depending on cancer stage, cancer
genetics, and organ-specific microenvironment.

Intestinal normal and neoplastic epithelium develop
from stem-progenitor cell hierarchies.32 Analogously to this,
we have previously shown that Grem1þ intestinal reticular
stromal cells identify connective tissue stem cells in the
normal small intestine.23 Here, our data indicate that the
majority of CRC CAFs, however, arise not from Grem1þ cells,
but from intestinal Lepr-lineage pericryptal cells. Interest-
ingly, a recent paper found that Gli1þ pancreatic stellate
cells could contribute to approximately half of ACTA2þ CAFs
in a mouse model of pancreatic cancer.33 Further research is
required to determine the hierarchic or overlapping rela-
tionship between Lepr-lineage and Gli1-lineage CAFs in
different tissues in health and neoplasia.

One limitation of the present study is that we were not
able to ascertain whether Lepr-lineage CAFs display cellular
plasticity during cancer development, as has been shown to
occur in cancer stem cells,32 or whether they undergo an
irreversible “lineage-restricted” differentiation. Given that
CAFs are considered to exhibit tumor stage–dependent
phenotypes,1,34 it is conceivable that Lepr-lineage CAFs
could adapt to dynamic phenotypic shifts during colorectal
carcinogenesis and co-evolve with epithelial genetic events.
forming growth factor (TGF) b is associated with poor survival
AM in human colorectal samples. (A) Representative pictures.
oxylin counterstaining). 3 HPFs (�400)/patient, 4–5 patients
Ss. n ¼ 76, 220, 72, and 143 patients (CMS1–4). TCGA, The
, YH2, was incubated with vehicle, recombinant TGF-b1, or
) for 24 hours, followed by quantitative reverse-transcription
thylsulfoxide. (E) Single-cell RNA sequencing data show that
pression in colorectal CAFs. n ¼ 1854 CAFs. Solid line, linear
epresentative images and scoring system. (G) Kaplan-Meier
ed by Dunn’s multiple comparisons test (B and C), 1-way
parison test (D), Spearman correlation (E), and log-rank test
and 4.
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Another limitation of this study is that we have not
determined whether MCAM expression is induced by TGF-
b in Lepr-lineage fibroblasts during colorectal tumori-
genesis, despite showing that TGF-b up-regulates Mcam
expression in colonic fibroblasts in vitro. TGF-b signaling
plays a key role in differentiation of Tcf21þ hepatic stel-
late cells to ACTA2þ CAFs, thereby promoting liver tumor
progression.35 Further research is warranted to investi-
gate whether conditional knockout of a TGF-b receptor in
Lepr-lineage cells could suppress MCAM expression and
thus attenuate cancer progression in a mouse model of
CRC.

This work also demonstrated that MCAM is an attractive
therapeutic target that modifies the immunosuppressive
milieu through augmenting NF-kB signaling, key signaling
that defines inflammatory phenotypes in CAFs.6,36,37 Excit-
ingly, MCAM-neutralizing antibodies show promising results
in restraining cancer progression in preclinical models,
including an AOM/DSS model.17,18 Future research should
focus on investigating whether co-treatment of the MCAM-
neutralizing antibody and an immune checkpoint inhibitor
could unleash a cytotoxic immune response against immu-
nologically “cold” cancers that are resistant to
immunotherapies.

In conclusion, our data show that Lepr-lineage intestinal
stromal cells, resident at the pericryptal base in the normal
colon, proliferate in colorectal carcinogenesis to generate
MCAMþ CAFs. We also show that MCAM is an important
factor in sculpting the detrimental immune microenviron-
ment responsible for driving colorectal carcinogenesis and
the associated poor patient outcome. In the future, ap-
proaches to reduce the expansion of Leprþ pericryptal cells,
prevent their differentiation into MCAMþ CAFs, and inhibit
the activity of MCAM-mediated NF-kB signaling axis in
mature CAFs may all have considerable clinical value in the
treatment of colorectal cancer.
=
Figure 6. Stromal MCAM promotes CRC progression via IL1R1-
(A) Experimental scheme showing orthotopic injection of ApcD/

the colon. (B) Kaplan-Meier survival curves. (C, D) Luciferase sig
18 Mcam-WT and 16 Mcam-KO mice. (E, F) Macroscopic evalu
jection. (E) Representative pictures. Dotted lines indicate tumor
Mcam-WT and 6 Mcam-KO mice. (G, H) Immunohistochemistry
macrophages as assessed by morphology. (H) DAB-positive are
of 41 macrophage/monocyte chemoattractant genes identified
MCAMhigh CAFs compared with MCAMlow CAFs (scRNA-seq
expression of MCAM augments IL1b-p65-Il34/Ccl8 signaling in
stimulated with recombinant IL1b, followed by WB (J, K) and qu
Mean ± SEM. n ¼ 3 each. p-p65, phosphorylated p65. (M) Immu
anti-HA antibody, followed by WB. A green asterisk denotes the
was used to detect IL1R1 protein tagged with MYC. Blue and red
respectively. (N, O) In situ hybridization (ISH) for Il34, Ccl8, an
sentative pictures. Green dotted lines indicate borders betwee
hematoxylin counterstaining). Red arrowheads denote Il34þ or C
bars, 200 mm (A), 2 mm (E), 50 mm (G and N). All histopathologic
after tumoroid injection. 3 HPFs (�400)/tumor, 1–2 tumors/mou
unpaired t test with Welch’s correction (D), Mann-Whitney U te
Tukey’s post hoc multiple comparison test (K and L): ****P � 0.0
DAB, 3,30-diaminobenzidine; KO, knockout; IVIS, in vivo imag
breviations as in Figures 1 and 4.
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