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High-throughput technologies have led to the generation of complex wiring diagrams as a post-
sequencing paradigm for depicting the interactions between vast and diverse cellular species. While
these diagrams are useful for analyzing biological systems on a large scale, a detailed understanding
of the molecular mechanisms that underlie the observed network connections is critical for the
further development of systems and synthetic biology. Here, we use queueing theory to investigate
how ‘waiting lines’ can lead to correlations between protein ‘customers’ that are coupled solely
through a downstream set of enzymatic ‘servers’. Using the E. coli ClpXP degradation machine as a
model processing system, we observe significant cross-talk between two networks that are
indirectly coupled through a common set of processors. We further illustrate the implications of
enzymatic queueing using a synthetic biology application, in which two independent synthetic
networks demonstrate synchronized behavior when common ClpXP machinery is overburdened.
Our results demonstrate that such post-translational processes can lead to dynamic connections in
cellular networks and may provide a mechanistic understanding of existing but currently
inexplicable links.
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Introduction

Evolutionary pressure has driven organisms to develop into
energy efficient machines, which conserve resources by
minimizing biosynthetic costs and producing only the required
amount of certain costly proteins (Warner et al, 2001;
Vilaprinyo et al, 2010; Barton et al, 2010). An implication
of maintaining only the minimal amount of critical machinery
is the potential to overload important pathways during
times of stress and to place unanticipated burden on important
cellular workhorses. This can lead to the development
of ‘waiting lines’ for biochemical processing which may cause
apparent correlations between seemingly disconnected
components that share the same processing pathways. In
that sense, an analogy can be drawn to multiclass queueing
theory (Kelly, 1979; Bramson, 1998; Williams, 1998; Bramson
and Dai, 2001), which we employ here to provide a unifying
model for describing how ‘waiting lines’ for processing
by a common enzyme (the ‘servers’) can lead to
correlations between two otherwise uncoupled proteins (the
‘customers’).

Generally, when strong correlated behavior is observed
between two proteins in response to some perturbation, it is
assumed that there is a direct coupling mechanism in place,
such as correlated transcription. However, recent studies have
revealed a lower degree of correlation between mRNA and
protein levels than expected, indicating the need to search for
other coupling mechanisms that may lead two protein species
to follow similar trends in concentration (Gygi et al, 1999;
Futcher et al, 1999; Greenbaum et al, 2003; Guo et al, 2008).
Here, we use several experimental approaches along with a
new application of queueing theory to reveal that a seemingly
minor form of indirect coupling between cellular species can
lead to surprisingly strong correlated behavior. As a model
system, we use the native E. coli protease, ClpXP, as the
‘server’ and impose various static and dynamic conditions of
underloading and overloading the cells with protein ‘custo-
mers’ targeted for destruction by this complex. We demon-
strate that the transition from an underloaded to an overloaded
regime can manifest itself in significant cross-talk between two
independent networks, where the induction level of one
protein substantially affects the mean and variability of the
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other protein. We also apply queueing theory to a native stress
response system and demonstrate the use of this coupling
property as a signaling mechanism to alert the cell to a
dangerous environment.
The correlated behavior that arises from this type of indirect
coupling can have many implications, both in the analysis of
native cellular networks and in the design and construction of
synthetic networks. For example, systems biology employs
high-throughput technologies to reconstruct cellular networks
and generate high level wiring diagrams (Alon et al, 1999;
Golub et al, 1999; Ideker et al, 2001; Sauer, 2004; Li et al, 2004).
While useful as tools for analyzing and understanding
biological networks on a large scale, determining how these
components are connected is the next critical step in under-
standing what the underlying interactions are and how they
lead to the observed cellular behaviors. Similarly, the field of
synthetic biology relies on a fundamental understanding of the
relationship between cellular networks and the behaviors that
emerge from their complex interactions (Elowitz and Leibler,
2000; Gardner et al, 2000; Hasty et al, 2002; You et al, 2004; Del
Vecchio et al, 2008; Tabor et al, 2009; Tan et al, 2009; Danino
et al, 2010; Kim and Sauro, 2010). As many of the emerging
studies in synthetic biology aim to develop circuits that exhibit
specific, dynamic behaviors, understanding and utilizing both
direct and indirect coupling mechanisms will become essential
to designing successful synthetic systems.

Results

To illustrate how queueing theory can be used to analyze
indirect coupling, suppose that two proteins X1 and X2 are

involved in signaling pathways that do not directly interact,
but they are processed downstream by the same enzyme. If the
enzymatic ‘servers’ (S) are in abundance relative to the the
number of target ‘customer’ molecules (x1 and x2), then there
are no waiting lines and this corresponds to an underloaded
system in queueing theory (Figure 1A, left). On the other hand,
if the number of servers is small compared with the number of
customers, then the system becomes overloaded as the
customers must wait in line to be processed (Figure 1A, right).
Such an overloaded system introduces coupling between the
different types of customers. For example, consider an increase
in the number of X1 molecules on the right side of Figure 1A.
Conceptually, a rise in the number of X1 molecules will
increase the mean waiting time for the processing of X2,
leading to a decrease in the effective rate at which X2 leaves the
system. In other words, for fixed arrival rate of X2, the mean
number of X2 will increase as the number of X1 is increased,
even though there is no direct coupling between the two
protein species.

If the arrival of the two proteins X1 and X2 in Figure 1A is
governed by Poissonian statistics, with production rates l1 and
l2, respectively, the enzymatic system can be mapped to a
queueing system where analytical formulae for the steady-
state distributions can be derived (Mather et al, 2010; see
Mather et al, 2011 for discussion of transients). While the
resulting formulae are somewhat complex, they can be used to
predict several generic properties that should arise in the
context of coupled enzymatic processing. For example, for a
fixed production rate l2 of X2, the mean level of X2 increases as
the production rate for X1 is increased. Initially, this increase is
slow since the system is in the underloaded regime, but as
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Figure 1 Coupling via common enzymatic machinery: connection to queueing theory. (A) Rate-limited processing can couple the numbers of different job types in a
queue. Different jobs (yellow and cyan squares) are forming a queue to be processed and removed from the queue by a fixed number of servers with finite processing
capacity. If the arrival rate exceeds the maximum processing rate, the servers become overloaded, the queue lengthens dramatically, and the numbers of jobs competing
for the attention of the servers become tightly correlated. (B) Individual stochastic trajectories for a queueing system in three different conditions demonstrate correlation
resonance. We consider the system with L¼100 servers, each with a processing rate of m¼10 min#1. Jobs renege, that is, abandon the system, at the first-order rate
g¼ln2/20.0 min#1. Yellow corresponds to jobs of type 1 and count x1, while blue corresponds to jobs of type 2 and count x2. Trajectories are normalized by their arrival
rates. (Top) Underloaded condition, with l1¼0.25 mL, the arrival rate of job 1, and l2¼0.5mL, the arrival rate of job 2. The total rate of arrival L¼0.75mL is less than the
total processing rate mL. (Middle) Balanced condition, with l1¼0.5 mL, l2¼0.5mL, and L¼mL. (Bottom) Overloaded condition, with l1¼0.75 mL, l1¼0.5mL, and
L¼1.25 mL.
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waiting lines begin to lengthen, the system transitions to the
overloaded regime and the mean of X2 rapidly rises as l1 is
increased. At the transition point between the underloaded
and overloaded regimes (the ‘balance point’), the sum of l1

and l2 is equal to the processing capacity of the queueing
network. Interestingly, queueing yields a fast, adaptive
response for stress that is dynamic and noisy. Under certain
conditions, fluctuations in X1 and X2 are highly coupled, with
correlations peaking near the balance point (Figure 1B).

The stress response to nutrient starvation in E. coli has
recently been shown to elicit a rapid and adaptive response
through the saturation of downstream enzymatic machinery
(Fredriksson et al, 2007); that is, in the context of queueing
theory, the stressed system operates in the overloaded regime.
This network relies on the functionality of the protease ClpXP,
a well-studied example of shared enzymatic machinery that
targets many types of proteins for degradation (Figure 2A;
Levchenko et al, 2000; Sauer et al, 2004). In low stress
conditions, the concentration of the master stress regulator,
the sigma factor ss, is maintained at a low level through its
rapid degradation via ClpXP. However, when the cell is
subjected to nutrient starvation, an increased number of
mistranslated proteins are targeted for degradation by ClpXP
and they compete for a limited number of the proteases. This
increases the half-life of ss, which builds up, signals
starvation, and jump-starts the stress response. Queueing

theory provides several insights into both the dynamic
behavior of this response and the benefits that this type of
indirect regulation can confer on a network. First, by looking at
how the mean level of ss depends on the relative stress level
(Figure 2B), we observe that queueing yields a very sensitive
response that would normally be assumed to imply some type
of strong cooperativity (i.e., a very high Hill coefficient).
Second, looking at the temporal response of the ss level to a
transient stress, it is clear that queueing confers a very fast and
dynamic response. Importantly, the response is highly specific
temporally, as ss only remains at a high level during the time
that excess aberrant proteins are around (Figure 2C). Scanning
the production rate of mistranslated proteins, positive correla-
tions occur for a large range of parameters, peaking near the
balance point (Figure 2D; Mather et al, 2010).

To systematically investigate the dynamic properties of a
biological system in which queueing acts as a regulatory
mechanism, we constructed a synthetic system to overexpress
two different tagged proteins from separate and uncorrelated
promoters (Figure 3A). The PLtetO#1 promoter, used to drive
expression of YFP (yeast-enhanced yellow fluorescent protein,
venus), is tightly repressible by the Tet repressor (TetR) and
can be regulated over a range of up to 5000-fold by supplying
doxycycline to the culture (Lutz and Bujard, 1997). The hybrid
promoter, Plac/ara#1, used to drive expression of CFP (yeast-
enhanced cerulean fluorescent protein), is tightly repressed by
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Figure 2 The E. coli stress response network employs queueing as a signaling mechanism to ensure the most rapid response possible to adverse conditions.
(A) Certain types of stress cause the accumulation of a large amount of aberrant proteins, which are targeted for rapid degradation and compete with the master stress
regulator, ss, for a limited amount of ClpXP machinery. This leads to a decrease in the effective degradation rate of ss, allowing it to build up rapidly and initiate an
immediate response. See the Supplementary Information for a precise definition of the model and for simulation details. (B) For a stochastic queueing model with 100
ClpXP molecules that each have processing rate m¼10 min#1, with cells dividing every 20 min, a scan of the mean steady-state level of ss with respect to the stress level
(mistranslated protein production rate lm) demonstrates a very sensitive response of the system once the system has crossed the balance point (respectively colored
dashed lines). Different ss basal production rates lss are indicated in the figure. (C) The dynamic response of ss to a 10-min pulse of stress demonstrates that queueing
provides for a very fast and dynamic response. Importantly, the response is highly specific temporally, as ss only remains at a high level during the time that excess
aberrant proteins are around. We assume the basal rate lss¼500 min#1, while lm¼1000 min#1 during the pulse of stress but lm¼0 min#1 otherwise. (Inset) The mean
response amplitude of ss to a periodic stress is strongest, especially at fast frequencies, when the system is on average near balance or slightly overloaded. The rate lm is
taken to be a constant plus a sinusoid with amplitude 100 min#1 and given frequency. (D) The adaptive response leads to positive correlations betweenss and mistranslated
protein levels for a broad range of parameters, peaking near the balance point (respectively colored dashed lines). Parameters are the same as those used in (B).
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the Lac repressor (LacI) and activated by AraC. It can be
regulated over a range of up to 1800-fold in the presence of
IPTG and arabinose in the culture (Lutz and Bujard, 1997). For
high expression from the Plac/ara#1 promoter, we used 1 mM of
IPTG in all samples to fully relieve repression by LacI, and we
used various levels of arabinose to tune the induction level of
CFP. Both YFP and CFP were tagged on their C terminus with
the well-characterized 11-residue ‘LAA’ tag (AANDENYALAA),
marking them as targets for rapid degradation by ClpXP (Keiler
et al, 1996). To ensure stable synthesis and maintenance of the
regulatory proteins, the synthetic system was transformed into
an E. coli DH5 a Z1 host that produces constitutive levels of
TetR, LacI and AraC off of the chromosome (Lutz and Bujard,
1997), and controls were performed to ensure that there was
no direct cross-talk between the two promoters (see Supple-
mentary Figure S4).

Our queueing analysis of the enzymatic decay of highly
expressed proteins predicts that at certain levels of expression,
the mean level of one protein will be significantly coupled to
the mean of the other. To test this hypothesis, we planned to
hold production of one protein constant, while tuning the level
of the other. As a first step, we acquired induction data for the
Plac/ara#1 promoter driving GFP, to determine several arabi-
nose levels to fix for the constant condition. Interestingly, we
found a striking difference in the shapes of the induction
curves for tagged and untagged variants of the fluorescent

reporter (Figure 3B). While the untagged protein responded in
the expected manner (Lutz and Bujard, 1997), the tagged
protein data showed clear evidence of queuing as predicted by
the theoretical model (Figure 2B), with a sharp bend in the
curve indicating the balance point, where ClpXP transitions
from the underburdened to overburdened state.

We then used two-color flow cytometry to generate
induction curves for the two systems, fixing arabinose at three
levels and tuning YFP production with doxycycline, and we
were surprised by the extent to which the inducer for one
species affected the other species. For example, as doxycycline
was varied over a full induction range for YFP, we observed up
to a 12-fold increase in the mean level of CFP (Figure 3C).
Likewise, we observed unambiguously that the two proteins
exhibited highly correlated behavior as we swept doxycycline
and plotted the mean levels of CFP as a function of the mean
levels of YFP (Figure 3D). This result highlights an important
point in the general context of gene-regulatory and signaling
networks; were this data collected in the absence of a
mechanistic understanding, one would likely conclude that
YFP is some form of inducer for CFP.

To place this queueing phenomenon in the context of native
cellular behavior, it is important to develop a quantitative
understanding of the system0s balance point and the proces-
sing capacity of ClpXP in healthy E. coli cells. To convert mean
fluorescence data to a more informative protein count, we
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Figure 3 Coupled enzymatic degradation of yellow and cyan LAA-tagged fluorescent proteins by ClpXP machinery in E. coli. (A) Schematic network diagram of the
synthetic circuit. YFP is produced by the PLtetO#1 promoter, which is repressed by TetR in the absence of doxycycline. CFP is produced by the Plac/ara#1 promoter, which
is activated by AraC in the presence of arabinose. Both CFP and YFP molecules are tagged with identical LAA tags and are targeted for degradation by the ClpXP
complexes. (B) Induction plots for a single fluorescent protein (GFP) produced by the Plac/ara#1 promoter. IPTG is held at 1 mM to fully relieve repression by lacI, and
production is tuned by addition of arabinose. Blue and red symbols indicate untagged and LAA-tagged protein, respectively. Squares are mean protein counts, while
diamonds are median protein counts. Solid lines are steady-state model fits to the data (including those in C and D). The red line stochastic queueing model prediction
for enzymatic protein degradation compares favorably with the data. (C) Mean steady-state expression of CFP as a function of doxycycline concentration at three
different levels of arabinose in triplicate flow cytometry measurements. Strong coupling is observed between CFP and YFP. Protein counts are reported using a
combination of two-color flow cytometry and western blots. (D) The means of CFP and YFP increase simultaneously as the doxycycline concentration is increased. The
color of the symbols corresponds to (C). In both (C) and (D), results for the stationary state of a fitted stochastic queueing model are included as solid lines. Supposing a
doubling time tdE30 min, we find an enzymatic degradation rate m¼7.6$ 103 min#1 for the model provides a good fit to the plotted results. Values for the production
rates of YFP at given dox concentrations and for the production rates of CFP at given arabinose concentrations were determined from a best fit to the data.
The qualitative result of this fit is that CFP only measurably increases when YFP becomes comparable in magnitude, consistent with a slightly overloaded queue.
See Supplementary Information (Supplementary Figures S1, S5, and S6) for fitting details and parameters. Source data is available for this figure in the Supplementary
Information.
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used a combination of flow cytometry and quantitative
western blots (see Supplementary Figures S2 and S3) to
calculate a scaling factor with which to directly compare YFP
and CFP mean fluorescence levels as reported by the flow
cytometer. We then employed western blots to determine a
combined mean number of tagged YFP and CFP molecules per
cell for various induction levels. The combination of these two
approaches provides the numerical information necessary to
translate the typical ‘arbitrary units’ to a number of proteins
and yields a balance point value of 7.6 K tagged proteins
produced (and degraded) per minute for this system. While
healthy cells are believed to be in the underloaded regime
(Moore and Sauer, 2005), in which they would not possess
queues of excess tagged proteins, it is clear that certain
stressful conditions, like carbon starvation, will push the
degradation system far beyond the balance point (Neher et al,
2006; Ferenci, 2007; Fredriksson et al, 2007; Bougdour et al,
2008; Hengge, 2009). In fact, this appears to be a beneficial
design feature of the E. coli stress response network, as the
degradation delay allows the master regulator, ss, to build up
rapidly for immediate response but to be removed and recycled
quickly after the system is repaired.

The favorable comparison between model and experiment
indicates that queueing theory provides a quantitative
approach for describing coupled enzymatic processing (Figure
3B–D, solid lines). The model fits were derived through use of
a fitting algorithm to determine model parameters m, g, K, a Hill
function-based parameterization for l1 (production rate of
YFP for a given doxycycline), and the parameterization for l2

(production rate of CFP for a given arabinose). Interestingly,
although the model involves many parameters, the shape of
the fitted curves depends only on a few parameters,
particularly the enzymatic degradation rate m (see Supple-
mentary information). This indicates that the model describes
the system well and that we are not overfitting the data.

To further investigate the implications of enzymatic queue-
ing, we designed a microfluidic platform based on previous
designs (Bennett et al, 2008; Ferry et al, 2011) to drive and
monitor the signaling responses of the two networks at the
single-cell level. We drove production of YFP with a periodic
square-wave signal of doxycycline (see Materials and methods
summary) and used two-color microscopy to observe the
response of both the YFP and CFP signals. Whole-field
fluorescence of a population of E. coli cells demonstrates
how the coupling of the two proteins through the shared
degradation pathway serves to drive one system in response to
the behavior of the other, as both the YFP (Figure 4A, green)
and CFP (Figure 4A, blue) signals oscillate with the driving
signal (Figure 4A, red). Similar trends can be observed in the
fluorescence trajectories of individual cells (Figure 4B).
Correlated behavior between the two reporters is observed in
response to the driving signal as well as in long-term
expression trends (Figure 5).

Based on these results, we hypothesized that the effect of
queueing through coupled enzymatic processing could have
significant implications in the developing field of synthetic
biology. As most synthetic biology approaches employ
degradation tags to enforce the necessarily quick turnover of
key network components, waiting times for processing by
ClpXP (or similar machinery in other biological systems) may
be exploited to generate synchronized behavior among
seemingly independent circuits. To test this hypothesis, we
constructed a synthetic two-color system involving two
independently produced fluorescent proteins: one (GFP–
LAA) produced periodically by a synthetic oscillator and the
second (CFP–LAA) produced by a separately tunable promoter
(Figure 6A). We built a new single-plasmid version of a
previously reported synthetic oscillator (Stricker et al, 2008)
with the activator (araC–LAA), repressor (LacI–LAA), and
reporter (GFP–LAA) all on a p15A plasmid. For the second
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component, we placed the LuxI promoter driving CFP–LAA
along with a constitutively produced LuxR on a high copy
pUC19 vector, such that the expression of CFP is inducible by
the addition of AHL to the medium.

We loaded this system into our microfluidic platform and
imaged cells for several hours without AHL, and we found

regular oscillations of GFP–LAA with an average period of
28 min, while CFP–LAA levels were negligible. However,
following induction with 15 nM AHL, the mean levels of both
CFP and GFP increased, and CFP trajectories rapidly became
correlated with GFP trajectories. Some cells produced irregular
oscillations of both colors with much longer periods, while
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others stopped oscillating altogether (Figure 6B and C). These
results indicate that the additional production of tagged
proteins by an independent circuit had a dramatic effect on
the behavior of the synthetic oscillator, due to an increased
burden on the degradation machinery.

Discussion

The steady-state induction characteristics and dynamic
coupling observed in the two synthetic systems provide
unambiguous evidence of how queueing for common enzy-
matic processing can induce coupling when there is a
significant abundance of proteins relative to the number of
functional enzymes. If such behavior was observed in a native
or uncharacterized system, it would likely be assumed that
these two proteins were coupled in a direct way, such as by
coordinated gene expression or by a protein–protein interac-
tion. As large-scale wiring diagrams have become a post-
sequencing paradigm for depicting the interactions between
vast and diverse cellular species, a major challenge is the
deduction of the molecular interactions that underlie the
observed correlations. Our results demonstrate that strong
correlated behavior can be observed between two components
that are only indirectly coupled via an overloaded enzymatic
process and suggest that indirect coupling sources should be
considered when evaluating native systems or designing and
constructing functional synthetic networks.

By quantifying the number of tagged proteins observed in
our experiments instead of using the typical ‘arbitrary units,’
we were able to generate a more precise numerical queueing
model and to approximate the true ‘balance point’ in the natural
system, above which the number of tagged proteins will likely
lead to correlated behavior. While healthy cells are believed to be
in the underloaded regime, in which they would not possess
significant queues of excess tagged proteins, it is clear that
stressful conditions can push the degradation system beyond the
balance point, causing correlations between many proteins as a
result. In fact, this may be a beneficial design feature of some
stress response networks, where the degradation delay allows
the required proteins to build up rapidly for immediate response
but to be removed and recycled quickly after the system is
repaired. There are likely many other examples of enzymes that
exist in small numbers by design to confer specific behaviors to
biological networks. For example, the yeast scaffold protein Ste5
is maintained in limited amounts to concentrate its targets near
the common backbone (Chapman and Asthagiri, 2009).

Similarly, it may be beneficial to exploit these indirect links
when designing new synthetic systems. As many of the
interesting studies in synthetic biology focus on the creation of
circuits that exhibit precise, dynamical behavior, targeted
degradation of key network components has become an
almost essential characteristic of synthetic systems. Since
our study demonstrates how the use of degradation tags can
lead to unexpected correlations, the results will have
important implications on efforts to establish a ‘forward
engineering’ methodology. That is, it may be both critical to
consider coupled degradation in the modeling of genetic
circuits and potentially interesting to intentionally incorporate
waiting lines into the design criteria of novel synthetic systems
to enhance the desired behavior.

Materials and methods

Strains and flow cytometry
The plasmids were constructed using the pZE24-mcs2a cloning
plasmid, which has a kanamycin resistance marker and the hybrid
Plac/ara#1 promoter upstream of a multiple cloning site (mcs) (Lutz and
Bujard, 1997). For the dual-color plasmid, pNO-2cLAA, the sequence
for CFP was tagged by PCR with a carboxy-terminal ssrA tag
(AANDENYALAA) (Keiler et al, 1996) and inserted between the KpnI
and HindIII sites of the mcs, creating pZE24-CFP–LAA. The YFP
fragment was similarly tagged and inserted onto the pZS31-mcs2a
cloning plasmid, which contains a chloramphenicol resistance marker
and the PLtetO#1 promoter upstream of an mcs. The fragment of this
plasmid containing the marker gene and PLtetO#1 driving YFP was
copied by PCR and inserted into the SacI site of pZE24-CFP–LAA,
creating the final plasmid pNO-2CLAA, containing the independently
controlled fluorescent proteins. The plasmids for comparing the tagged
and untagged GFP induction curves were constructed similarly on the
same plasmid backbone.

For the synthetic oscillator coupled to a constitutive system, the
medium copy oscillator (pTDCL8) was constructed by combining
oscillator components from pJS167 and pJS169 (Stricker et al, 2008)
onto a single p15A plasmid. The pJS167 module (from SacI up to AvrII)
was copied by PCR with Kan resistance and flanking AvrII and NheI
sites, and it was inserted via ligation at the AvrII site of the pZA14-LacI
vector, maintaining uniqueness of the AvrII site and creating an
undigestable AvrII-NheI hybrid site. The pLuxI-CFP plasmid (pZU25-
CFP–LAA) was constructed by building pZE25-CFP–LAA and inserting
the promoterþCFP module by PCR onto a pUC19 vector via flanking
AvrII sites (U¼pUC19, 5¼luxIp promoter).

Flow cytometry data were taken with a Becton-Dickinson LSR II Cell
Analyzer, fitted with 405 and 488 nm lasers. The cells were grown
overnight in non-inducing medium: LB plus kanamycin for plasmid
selection. The cells were passed in the morning into LB plus
kanamycin plus various levels of inducer, doxycycline, arabinose/
IPTG, or both. The cells were grown in a 371C shaker at 300 r.p.m. After
3 h, the cells were harvested by centrifugation, resuspended in sterile
PBS, and put on ice until they were ready to be sampled. Using the LSR
II, 100 000 cells were assayed using MATLAB (The MathWorks, Inc.)
and interfacing software. The SBML file of the model used is archived
at BioModels (MODEL1111150000).

Microfluidics and microscopy
Image acquisition was performed on a Nikon Eclipse TI epifluorescent
inverted microscope outfitted with fluorescence filter cubes optimized
for YFP and CFP imaging and a phase-contrast-based autofocus
algorithm. Images were acquired using a Photometrics CoolSNAP HQ2
cooled CCD camera, controlled by Nikon Elements software. For the
signaling experiment, images were acquired every 1 min in phase
contrast, to provide the optimal temporal coverage to suit the
automated tracking program. Fluorescent images in the CFP and YFP
channels were acquired every 5 min. The cells were imaged inside a
microfluidic device with an upstream switch, with the ability to mix or
switch between two different media sources. A custom application
written in LabVIEW (National Instruments, Austin, Texas) controlled
linear actuators, to which two reservoirs containing inducing and non-
inducing medium were attached. Using this algorithm, a square wave
of 3 h period was generated, subjecting the cells to alternating 90 min
terms of 220 ng ml#1 and 0 ng ml#1 doxycycline. For the synthetic
circuit experiment, CFP–LAA was induced with 15 nM AHL (N-3-Oxo-
hexanoyl-homoserine lactone) from the LuxI promoter as described in
the main text. Cells were imaged every 30 s in brightfield and every
4.5 min in both CFP and YFP channels. Controls were performed to
ensure that IPTG and Dox did not affect the incorrect promoter and that
lacI and tetR do not repress the incorrect promoter, as well as to ensure
there was not significant overlap between the CFP and YFP channels,
even when imaging CFP and GFP.

The microfluidic experiments were performed as previously des-
cribed (Danino et al, 2010). Briefly, 50ml of an overnight culture was
diluted in 50 ml of LB (Difco)þ antibiotics the day of the experiment.
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When cells reached an OD600 of 0.1, cells were spun down and
resuspended in 5 ml of fresh media and loaded into the device. Image
processing was performed using a custom application tied into the
ImageJ image processing suite. Images were segmented by creating a
binary mask to identify individual cells, and cells were tracked from
frame to frame using a combination of quantitative characteristics.
The output of this process is the single-cell trajectory information
provided in the main text.

Supplementary information
Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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Queueing up for enzymatic processing:

Correlated signaling through coupled degradation

(Supplementary Information)

Natalie A. Cookson, William H. Mather, Tal Danino,
Octavio Mondragón-Palomino, Ruth J. Williams, Lev S. Tsimring, Je↵ Hasty

SBML Model

The SBML file of the model used for this study has been archived at the BioModels Database
(MODEL1111150000).

Flow Cytometry

Flow cytometry data was taken with a Becton-Dickinson LSR II Cell Analyzer, fitted with 405nm
and 488nm lasers. Because a wide range of fluorescence intensities arose as inducer levels were
scanned, the sensitivity (set by voltage) of photomultiplier tubes in the flow cytometer was varied
from sample to sample. We calibrated the photomultiplier tubes by scanning a range of voltages
for cells with a constant mean level of fluorescent protein, either YFP or CFP alone. We fit the
resulting mean YFP and CFP intensity curves to piecewise-smooth functions of voltage. These
functions were used to correct flow cytometry data by scaling all measurements to a common
apparent voltage.

In order to be able to directly compare numbers of fluorescent proteins of YFP and CFP, we
used a plasmid containing two copies of the PLtetO�1 promoter, one driving YFP-LAA and one driv-
ing CFP-LAA (pZA11-YC-LAA). This was constructed using similar techniques to those described
above. Using this strain and the assumption that the two proteins should be produced in equal
mean levels due to their tandem arrangement on the same plasmid, we induced cells at various
concentrations of doxycycline and measured mean fluorescence. We scaled CFP fluorescence such
that the mean CFP fluorescence values at the selected induction levels were essentially the same
as the corresponding YFP mean fluorescence values (di↵erence of 0.5% in the typical mean fluores-
cence), and we were able to determine a conversion factor to compare YFP “arbitrary units” (AU)
to CFP AU. This, combined with the Western blot data (see below) enabled the estimation of the
total number of each fluorescent protein in each data set.

As another validation of the queueing theory, we compared this dual-color induction data to
an almost identical plasmid, but one in which only YFP-LAA was produced from the PLtetO�1

promoter. Interestingly, we found that the overall level of YFP fluorescence was significantly lower
in the case of expression of only one of the two colors. This falls in line with queueing theory
predictions. That is, in the dual-color case, the total number of tagged proteins is doubled, so
ClpXP would be more overloaded than when just a single fluorescent protein type is produced.
This is further evidence that over-burdening the protease can lead to coupling between the levels
of two di↵erent proteins.
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As described in the main text, we also compared induction curves of tagged and untagged
fluorescent proteins, in an e↵ort to determine if the queueing e↵ect could be directly observed in
induction data. This also served to demonstrate that the e↵ects observed throughout the experi-
ments were in fact due specifically to the abundance of tags, and not simply side e↵ects of general
over-expression. To take this data, we created two plasmids very similar to those used for the
two-color study. We used the pZE24-mcs2a cloning plasmid [1], which has a kanamycin resistance
marker and the hybrid Plac/ara�1 promoter upstream of a multiple cloning site (mcs). We simply
replaced the mcs with either GFP or GFP-LAA, and used this to take induction data as described
in the main text.

For all flow results, a background subtraction procedure was performed on the raw data (after
the voltage correction described above) to arrive at reported YFP and CFP fluorescence statistics.
Using data from the experiments discussed in the main text, we defined the background mean of
YFP and CFP fluorescence as that derived from cells induced with 1 mM IPTG alone (in the
absence of arabinose or doxycycline). The background mean for each color was subtracted from
the mean of raw data.
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Figure S1: Coupled enzymatic degradation of yellow and cerulean LAA-tagged fluorescent proteins by ClpXP
machinery in E. coli. (a) According to the stochastic queueing model, the ratio of the two mean concentrations
hx1i/hx2i is equal to the ratio of the corresponding production rates �1/�2. In accordance with the model, the
ratio hyfpi/hcfpi exhibits the same dependence on dox concentration for three di↵erent levels of arabinose, which
allowed us to collapse all the data to a common curve by normalizing them by the mean value over the whole
range of employed dox concentrations. Inset shows the same data without collapsing. (b) Coe�cient of variation
of CFP concentration decreases with increasing dox in the overloaded regime in qualitative agreement with the
queueing theory predictions (di↵erent symbols correspond to three levels of arabinose concentration similar to
panels c-d of Fig. 3 in the main text). Solid lines represent trend lines through the data.

As one further test of the stochastic queueing model, we used the theoretical results to deduce
the scaling relationship between the data sets in Fig. 3c of the main text at di↵erent levels of
arabinose. In other words, if correct, the theory can be used to predict how one can plot the data
such that it will collapse onto the same curve. The resulting verification of this prediction further
confirmed the general validity of the queueing theory approach (Fig. S1a). Lastly, we calculated
the noise (as measured by the coe�cient of variation) of the CFP signal as a function of increasing
doxycycline (Fig. S1b). The general trend of these curves is also in agreement with the theoretical
predictions.

We did not investigate the e↵ect of removing SspB [2], a protein associated with increased
a�nity of tagged proteins to ClpXP. We anticipate that a moderate decrease in this Michaelis-
Menten a�nity would not qualitatively change our conclusions.
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Protein Counts

A

B

Figure S2: Inverted image of Western blot film taken for cellular lysate data from two induction levels, where
IPTG and arabinose were held at 1 mM and .8%, respectively, and doxycycline was 32 ng/ml (A) and 68 ng/ml (B).
An antibody for GFP variants was used to detect the total amount of CFP and YFP inside these samples, when
compared to a purified GFP standard (left five lanes of both A and B).

Western blots were performed using standard techniques in order to quantify the number of
tagged fluorescent proteins being measured in our flow cytometry data. As a standard, we used
purified Enhanced GFP (BioVision 4999-100), supplied in a 1 mg/ml 100 µl aliquot. We chose to
measure protein levels in a sample of cells expressing the pNO-2CLAA plasmid, induced to various
levels of dual-color expression. For all samples, we used 1 mM of IPTG and 0.8% arabinose.
Samples were induced exactly as done for the flow cytometry experiments. Cells were grown
overnight without inducers, and then passed 1:1000 into inducers for 3 hours. In order to obtain
enough protein for quantitative detection, 50 ml of each sample was harvested by centrifugation
after 3 hours. ODs at 600 nm were taken just before centrifugation, in order to quantify cell
number (see below).

After centrifuging the samples and aspirating the inducing medium, the cells were resuspended
in 100 µl of SDS sample bu↵er to aid in cell lysis by boiling. The total volume after resuspension
was measured in order to obtain an accurate measurement of cell concentration. Cells were then
lysed and proteins denatured by subjecting the samples (both lysates and standards) to boiling
water for 5 minutes. A 12 lane 12% Tris-Glycine gel was used in order to have enough lanes for a
su�cient dilution series of both the cell lysate sample as well as the standard. The standard was
diluted to a concentration of 100 ng/µl, and fives samples were loaded on the gel in subsequent
2-fold dilutions, starting with 500ng. Similarly, the cellular lysate was loaded in subsequent 2-fold
dilutions, starting with a volume of 15 µl. The gel was run at 125 V for about 100 minutes, followed
by a membrane transfer run at 25 V for 90 minutes.

Standard blocking and probing reactions were set up using a GFP polyclonal rabbit anti-
body (Cell Signaling 2555S) and an Anti-Rabbit IgG (whole molecule)-Peroxidase antibody. After
exposing the membrane to the Chemiluminescent Peroxidase Substrate (Sigma, CPS-1), Kodak
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Figure S3: Cell count was correlated with OD by taking several measurements throughout logarithmic growth
of each. A linear fit of this data was then used to convert the OD of Western blot samples to a particular
concentration of cells.

BioMax Light Film was exposed to the membranes in a dark room for 60 seconds. Once a sat-
isfactory image was taken, processing was performed using ImageJ. Background correction was
performed to remove some of the background coloration from the image. The image was then
inverted so that bands showed as white on a black background (Fig. S2), and the freehand selection
tool was used to quantify the total intensity of each band. Comparing the total intensity of each
standard band to the known protein mass loaded on the gel, we were able to obtain a function to
convert band intensity to protein mass, and this was used to quantify several lanes of the cell lysate
samples that fell within a linear range (where the known two-fold dilution matched a two-fold drop
in band intensity). Finally the protein weight measurement was converted to a total protein count
per cell, using the weight of a single protein and the number of cells loaded onto the gel. Control
experiments were performed to ensure that this antibody binds with equal a�nity to GFP, CFP,
and YFP. Cells expressing each protein from the same promoter were grown in identical conditions
and induced simultaneously. Western blotting was performed as described above to ensure that the
same signal was detected from each of the three samples, after normalizing for cell count.

Cell counts were done using a hemacytometer. Cells were grown in inducing conditions and
sampled every 20 minutes over a 3 hour period around the OD sampled for the Western blot data.
Cell count was plotted vs OD over this range and a good linear fit was achieved (Fig. S3). Using
this linear fit, we were able to calculate cell count for the ODs at which our cultures were sampled
for the Western blots.
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Figure S4: Control experiments were performed to ensure that there was no cross-talk between the inducers.
(a) Doxycycline is shown to not induce the expression of CFP (blue), but induces YFP (red). Addition of
arabinose increases YFP expression (green) due to slower overall ClpXP processing. (b) Arabinose does not induces
expression of YFP (red), but induces CFP (blue). Addition of doxycycline increase CFP expression (green).

Experimental Controls

Several control experiments were performed to ensure that the coordinated behavior in our two
experimental systems was due to degradation-based coupling and not just an artifact due to some
other phenomenon. First, the comparison of the tagged and untagged induction curves in the main
text served to demonstrate that the e↵ects we are seeing are due to the tag and not just side e↵ects
of over-expression. In the case of the dual-tunable signaling network, another primary concern was
ensuring that the two inducers did not interfere with the other promoters (i.e. that there is no
cross-talk between the two promoters). To test this, we induced cells with each of the two inducers
independently, and ensured that each color was only induced by the appropriate inducer (Fig. S4).
In panel a, it is clear that doxycycline strongly induces YFP (red) and not CFP (blue). When
arabinose is introduced in addition to doxycycline, the YFP levels increase (green), as CFP is now
being produced as well, causing an increased burden on ClpXP. The reverse is true as well; in
panel b, arabinose alone is seen to induce CFP (blue) and not YFP (red), however the addition of
doxycycline causes increased levels of CFP. This is further evidence of queueing theory, in addition
to a good control for crosstalk between the two promoters.

A similar control was performed for the dual-color synthetic circuit experiment. That is, the
oscillator strain was induced with AHL, and we saw no e↵ect on period of the oscillator, indicating
that AHL and LuxR do not interfere with the ara/lac promoter. As another general control that
the addition of tagged proteins causes the observed e↵ect, as opposed to it being some other artifact
of over expression, we tested the synthetic oscillatory system in conjunction with a high level of
a general, untagged protein (for this purpose, we used Pn25 driving TetR, untagged on a p15A
plasmid). When producing a large amount of untagged TetR (approximately 100,000 copies per
cell [1]) alongside the oscillator, we saw no di↵erence between this and the normal behavior of the
oscillator. This control provides evidence that there is no apparent e↵ect on period when expressing
untagged proteins. In addition, the experimental acquisition of the two induction curves (described
above), with the tagged and untagged versions of GFP, served to demonstrate that the e↵ects
observed throughout the experiments were in fact due specifically to the abundance of tags, and
not simply side e↵ects of general over-expression.
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Stochastic Theory - Model

The model considered in this paper involves production and degradation of protein types Xi, where
indices i = 1, 2, ...,m identify di↵erent protein types. Degradation occurs by the protein binding to
a protease P and subsequently being annihilated. Specifically, the model reactions are (rates are
rate constants, not including mass action terms)

Di

�i
GGGGGGA Xi + Di (1)

Xi

�
GGGGGA ; (2)

Xi + P
⌘+

GGGGGGBF GGGGGG

⌘�
XiP (3)

XiP
µ

GGGGGA P (4)

XiP
�

GGGGGA P (5)

where DNA Di produces protein Xi with rate constant �i, Xi is diluted (due to cell growth and
division) with rate constant �, Xi binds to the protease P with rate constant ⌘+, Xi unbinds from P
with rate constant ⌘�, and P degrades Xi with rate constant µ. Reactions occur with exponentially
distributed times. For simplicity of results, we assume that dilution can act on Xi bound to P ,
though results can be generalized to when dilution does not act on Xi bound to P . We typically
assume results for a single e↵ective protease (with an exception at the end of this section), though
single protease results can be generalized to many proteases [3]. We assume the count of each DNA
Di is 1 for simplicity.

Using reasonable approximations, we can further simplify Eqs. 1–5. The simplest approximation
is to suppose that ⌘� ⇡ 0 and that ⌘+ is large, such that the reactions in Eqs. 2 and 5 collapse
to Eq. 2 and Eqs. 3–4 combine into a single degradation reaction, where the protease chooses one
particular protein and degrades it at rate µ; the latter has the same steady-state behavior as when
Eqs. 3-4 are replaced by the reaction

Xi

µ/n
GGGGGGGGA ; (6)

where n =
Pm

j=1 xj , and xi is the count of protein type Xi, as in the main text. Similar results
can be derived if both ⌘+ and ⌘� are su�ciently large. This leads instead to the approximate
degradation reaction

Xi

µ/(K + n)
GGGGGGGGGGGGGGGA ; (7)

where K = ⌘�/⌘+ is a Michaelis-Menten parameter [3]. In the limit K ! 0, the ⌘� ⇡ 0 system is
recovered. More details concerning the motivation and derivation of the reduced rates in Eqs. 6–7
appear in Refs. [3, 4].

The reduced system, using either Eq. 6 or Eq. 7 for the enzymatic degradation reactions Eqs. 3–4,
can be mapped (preserving the statistical distributions of protein counts) onto a stochastic queueing
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model. One such queueing model places each new Xi at a random position in a single queue, while
P processes (degrades) the protein at the head of the queue. Dilution can be added by allowing
“reneging,” whereby any member of the queue (including a member being processed by the server)
leaves at an average rate of �.

In Fig. 2, a version of this stochastic queueing model is used to describe the �s stress response
system. We consider two substrates, mistranslated proteins, Xm and �s proteins, We suppose there
are 100 ClpXP “servers” that each have processing rate µ = 10 min�1. Binding of both substrates
to ClpXP is assumed fast (⌘+ = 108 min�1), and unbinding negligible (⌘� = 0 min�1). Cells are
assumed to divide every 20 min, such that � = ln 2 min�1. Production of mistranslated proteins
occurs with rate �m, and the production of �s occurs with rate ��s . The system is overloaded when
�m + ��s > 100 µ, balanced when �m + ��s = 100µ, and underloaded otherwise. The statistics
presented in Fig. 2 are derived from a large 32,000 ensemble of simulations. Single trajectories also
use an ensemble size of 1. Numerical simulations take advantage of custom code using the CUDA
framework for GPU acceleration.

Stochastic Theory - Results

We have carefully derived several relevant results for the above model in another study [3], which
applies the theory of multiclass queueing in the context of gene regulation. One key result is that
the steady state probability distribution P ({xi}) for the set of counts {xi} can be factored into
R(n), the probability distribution for the sum, times a multinomial distribution:

P ({xi}) = R(n) n!
mY

j=1

p
xj

j

xj !
(8)

where pi ⌘ �i/
Pm

j=1 �j . From this, it can be shown that moments of xi are given in terms of
moments of n. In particular,

hxii = pi hni (9)
�2

i ⌘
⌦
x2

i

↵
� hxii2 = pi(1� pi) hni+ p2

i (
⌦
n2

↵
� hni2) (10)

The moments of n are less general and will depend on the particular model. With the reaction
scheme Eqs. 1–2, 7, we find

hni =
↵�M(↵ + 1, � + 1, �)

�M(↵,�, �)
(11)

⌦
n2

↵
= hni+

↵ (↵ + 1)�2

� (� + 1)
M(↵ + 2, � + 2, �)

M(↵,�, �)
(12)

with ↵ ⌘ K + 1, � ⌘ (µ/�) + ↵, � ⌘ ⇤/�, ⇤ ⌘
Pm

i=1 �i, and M( · , · , · ) the confluent hypergeomet-
ric function of the first kind.

Deterministic Approximation for Mean Protein Counts

Though deterministic models do not address the many issues tied to noisy dynamics, e.g. cor-
relations between the counts of the protein species, certain aspects of queueing coupling can be
understood using a deterministic analog of the stochastic queueing model. Deriving approximately
deterministic processes from chemical reaction networks has a long history, and so we will be brief

7



0 1 2
0

10

20

30

40

50

h1  / μ  

<x
2>

K = 0

 

 
stochastic
deterministic

0 1 2
0

10

20

30

40

50

h1  / μ  
<x

2>

K = 1

0 1 2
10

20

30

40

50

h1  / μ 

<x
2>

K = 16

Figure S5: The deterministic approximation at steady state (see Eq. 13) can reasonably approximate the mean
concentration of proteins for the stochastic model at steady state, especially when the system is above balance or
when the Michaelis-Menten constant K is nonzero. Shown are results for a stochastic model and its deterministic
approximation for a system containing one enzyme with processing rate µ = 100 (AU). Proteins of type 2 are
produced at constant rate �2 = 0.5 µ, and dilution occurs with rate g = ln 2. The indirect response of mean
protein level hx2i is plotted as a function of the normalized production rate �1/µ of protein 1. It is seen that
deviation of the deterministic approximation from the stochastic mean value is largest in the underloaded regime
(left of the dashed line) and smallest in the overloaded regime (right of the dashed line). Furthermore, increasing
K reduces the error in the underloaded regime. These results support the general trend that we find in our
analysis.

in the details of this section. We use this deterministic approximation primarily to accelerate some
of our model fitting routines, but final results in the main text are always derived from stochastic
models.

A deterministic approximation for mean protein levels xi in a stochastic model with multiple
servers is given by

dxi

dt
= �i � �xi �

µxi

K + n
(13)

where �i is a production rate constant, � is the dilution rate constant, K is a Michaelis-Menten
molar constant, µ is the total enzymatic processing rate constant, and n =

Pm
j=1 xj is the mean

total protein count over all types. See [5] for mathematical details of derivation and validity for
similar systems. By comparison to numerical simulations, the deterministic model is a reasonable
approximation for the mean protein levels of the stochastic model (see Fig. S5). Deviation between
the deterministic model and stochastic mean levels is largest in the balanced and underloaded
regimes, but this deviation tends to be small when compared to the scale µ/�, especially when the
constant K is nonzero.

The steady state solutions x
(ss)
i to Eqs. 13 satisfy a relation similar to Eq. 9

x
(ss)
i = pin

(ss) (14)

where n(ss) is the total protein at steady state, and pi ⌘ �i/⇤. For finite K

n(ss) =
⇤� µ�K� +

p
(⇤� µ)2 + K�(2⇤ + 2µ + K�)

2�
(15)
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which simplifies in the limit K ! 0 to

n(ss) =
⇥(⇣)

�
(16)

where ⇣ = ⇤� µ, and ⇥(·) is the integrated Heaviside step function: ⇥(⇣) = ⇣ if ⇣ � 0 and ⇥(⇣) = 0
if ⇣ < 0. The solutions in Eqs. 14–16 reveal that components strongly interact when at least two
�i’s are simultaneously nonzero and ⇤ > µ.

Fitting of Steady State Model

Figs. 3b–d in the main text include fits of the stochastic model to the data. Below, we outline the
procedure to obtain fitted model parameters.

The fitted model results presented in Figs. 3c–d of the main text were derived through use of
a fitting algorithm to determine model parameters µ, �, K, a Hill function parameterization for
�1 (production rate of YFP for a given dox level), and a set of 3 values for �2 (production rate of
CFP for a given arabinose level). At the end of this section, we revisit these best fit values of �2

to find they are in reasonable agreement with single fluorescent protein expression data.
Curve fitting was implemented by a Metropolis algorithm. The energetic penalty used for the

algorithm was a weighted sum of the square distances between stationary state model mean values
(see Eqs. 9 and 11) and mean fluorescence data points. Due to the wide range of YFP fluorescence
magnitudes, we used linear distance when comparing CFP fluorescence and logarithmic distance
when comparing YFP fluorescence.

Parameters � and K were not especially important for our fitting. We scaled time by the
doubling time ⌧d (approximately 30 min.), such that the value of the dilution rate was fixed at
� = ln 2 in natural units. Furthermore, we set K = 0 with little reduction in the goodness of fit,
and setting K  1000 or so did not drastically change the results.

We found that the deterministic queueing model’s stationary state approximates the overloaded
stochastic queueing model’s mean values well, and so we used the deterministic model’s results
for rapid fitting of the data, even though final results are generated from the stochastic model.
Arbitrary precision calculations in the Maple 11 software package (Waterloo Maple Inc.) confirmed
the stochastic model’s mean values were reasonably approximated by the deterministic model with
the assumption of overloading.

Using the data from the dox induction curves in Figs. 3c–d of the main text, �1 was fit to a
shifted Hill function of the form

�1 = B1 + D1
(([dox]/C1)H1)

(1 + ([dox]/C1)H1)
. (17)

with H1 = 3.0782, B1/µ = 0.0023, D1/µ = 2.3429, and C1 = 168.2114 ng/mL. We did not fit �2

to a smooth curve, due to a small number of points being available, but we found best fit values
�2/µ = 1.0373, 1.1093, 1.2683.

Other parameters used for Figs. 3c–d in the main text are as follows: Using doubling time
⌧d ⇡ 30 min (for E. coli), µ = 7.589⇥ 103 min�1, � = ln 2, K = 0.

We tested consistency of the model fit in Figs. 3c–d by comparing results to the data in Fig. 3b.
Here, we found a continuous curve fit for the mean untagged (slow degrading) GFP fluorescence
multiplied by �, providing a continuous parameterization of the apparent production rate of GFP.
Before fitting, to account for the di↵erence between single molecule GFP and CFP fluorescence,
we scaled GFP fluorescence such that the three values of mean CFP fluorescence at low dox (in
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Figure S6: Pictured is the mean total protein at balance for the stochastic queueing model over a range of the
Michaelis-Menten constant K. This is approximated here by each protease (copy number L) processing at a
reduced rate µ/L and with Michaelis-Menten constant K. The balanced condition is defined here as when the
total protein production rate ⇤ equals the total processing rate µ, i.e. ⇤ = µ. Other parameters are determined
from the model fit in this section. We find the mean total protein at balance depends weakly on L for K > 0.
The theoretical protein level at K = 1000 can be considered a moderate perturbation compared to the typical
protein level for the experimental data in Fig. 3 of the main text. Note that even for zero K, queue lengths are
nonzero.

Figs. 3c–d) were closest in a least squares sense to the corresponding mean GFP fluorescences. We
fit the apparent production rate �⇤

2 = � < gfp > to the continuous function

�⇤
2 = B2 + D2

(([ARA]/C2)H2)
(1 + ([ARA]/C2)H2)

. (18)

with H2 = 1.3660, B2/µ = 0.0665, D2/µ = 3.1039, and C2 = 1.0323 %. The di↵erence ��2 between
�2 from panels c,d and �⇤

2 from panel b are relatively minor, being ��2/�2 = 0.1093, 0.0144,�0.0850,
respectively, suggesting that the fits are consistent.

In Fig. 3b, using the parameterization �⇤
2 and the model parameters determined by Fig. 3c–d, we

present the prediction for mean protein count as a solid red curve. This prediction is in agreement
with the data in Fig. 3b, suggesting that the data in Fig. 3b and in Figs. 3c–d are in agreement.

Though we found a small value of K (e.g. about a thousand or less) was consistent with
our model fit, the e↵ect of larger K on the stochastic queueing model at the balance point was
considered (see Fig. S6).
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