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Abstract
Bacterial colonies often exhibit complex spatio-temporal organization. This collective
behavior is affected by a multitude of factors ranging from the properties of individual cells
(shape, motility, membrane structure) to chemotaxis and other means of cell–cell
communication. One of the important but often overlooked mechanisms of spatio-temporal
organization is direct mechanical contact among cells in dense colonies such as biofilms.
While in natural habitats all these different mechanisms and factors act in concert, one can use
laboratory cell cultures to study certain mechanisms in isolation. Recent work demonstrated
that growth and ensuing expansion flow of rod-like bacteria Escherichia coli in confined
environments leads to orientation of cells along the flow direction and thus to ordering of cells.
However, the cell orientational ordering remained imperfect. In this paper we study one
mechanism responsible for the persistence of disorder in growing cell populations. We
demonstrate experimentally that a growing colony of nematically ordered cells is prone to the
buckling instability. Our theoretical analysis and discrete-element simulations suggest that the
nature of this instability is related to the anisotropy of the stress tensor in the ordered cell
colony.

S Online supplementary data available from stacks.iop.org/PhysBio/8/026008/mmedia

1. Introduction

Bacteria and other microorganisms often aggregate in dense
communities, either on surfaces (biofilms), or in narrow
cavities or crevices [1]. In these cases, long-range signaling
may play a secondary role in controlling colony organization,
whereas direct biomechanical interaction may become the
dominant factor [2–4]. Moreover, the lack of free space
impedes the flagellae-mediated motility of bacteria in dense

6 These authors contributed equally to this work.
7 Author to whom any correspondence should be addressed.

colonies such as biofilms, and as a result, the flagellum
expression itself is dramatically downregulated [5]. In our
recent work [6, 7] we explored the role of biomechanical
cell–cell interaction in colony organization using a non-motile
strain of bacteria Escherichia coli in an open microfluidic
chamber (see also [8]). We showed that an expansion flow
generated by the cell growth leads to ordering of cells in the
direction of the flow. The mechanism of this alignment is
different from the alignment of self-propelled particles studied
in a number of recent publications (see, for example, [9, 10])
since bacteria were not self-propelled and could only move
and change direction under direct mechanical contacts with the
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Figure 1. Two snapshots with superimposed local order parameter from the experimental run in a 100×90 μm2 side trap in which buckling
instability was observed: (a) t = 0 min, (b) t = 25 min. Solid blue lines show the solid walls of the trap and the dashed blue lines show the
open side. Red indicates low values of the local order parameter.

neighboring cells. We found however that in large colonies the
perfect nematic order is never reached; multiple domains with
different orientations are constantly regenerated in the bulk of
the colony. In this paper we focus on the physical mechanism
that causes this persistent disorder. We demonstrate that
destruction of perfect nematic order occurs due to the buckling
instability of oriented rod-like cells that is triggered by the
expansion flow which creates anisotropic stress tensor in the
bulk of the cell colony. We begin with the experimental
demonstration of the buckling instability in a quasi-two-
dimensional microfluidic trap filled with rod-like E. coli cells.
We show that the buckling instability occurs in the back of the
trap where the density of cells and the pressure are greatest.
Then we propose a continuum theoretical description of the
buckling instability based on the equations of elasticity theory
[11, 12] suitably modified to account for the cell growth. This
theory yields buckling instability of a nematically ordered ‘cell
fluid’ at sufficiently high anisotropic pressure compressing the
cells along their nematic axis. Because of the expanding flow
of cells, the unstable eigenmodes are localized in the interior
of the domain where the pressure is sufficiently large. Finally,
we present the results of discrete-element simulations (DES)
of growing and dividing granular rods which also demonstrate
the buckling instability in two-dimensional cell colonies in
agreement with the theory and experiments.

2. Experiment

We used a K-12 strain of non-motile bacteria E. coli that
possess a rod-like structure with a diameter of approximately
1 μm and a length that varies between 2 and 5 μm. The
experimental setup used in this work is similar to the one
described in [7]. The cells were loaded into custom-designed
microfluidic cavities containing shallow (height 1 μm)
rectangular ‘traps’ with (one or more) open sides allowing cells
to escape into a deep (height 6 μm) open channel once the trap
is densely packed. The latter also served for the delivery of
nutrients to cells and for removal of waste. The evolution
of the bacterial colony was recorded using optical time-
lapse microscopy with 1 min temporal resolution. Several
representative movies illustrating colony development are

available online (see the supplementary information available
at stacks.iop.org/PhysBio/8/026008/mmedia).

We analyzed the bright-field data using the image
analysis software ImageJ [13] and code written in MATLAB
(MathWorks, Inc.). Cell identification was achieved by
background-subtraction and subsequent thresholding of the
phase contrast images, with connected regions in the binary
mask identified as cell ‘particles’. From these regions, we
produce a set of centroid positions 〈�x〉k and angles θk for each
particle k.

We define the angle θ of a cell particle as the angle of
the two-dimensional orthogonal transformation Oij (θ) that
diagonalizes the particle covariance matrix Mij = 〈xixj 〉k −
〈xi〉k〈xj 〉k (with averages over pixels which belong to the
particle with index k) to have the largest eigenvalue in the
first component. That is,

Oij (θ) = cos (θ + (i − j) π/2) (1)

such that
2∑

m=1

2∑
n=1

O−1
im Mmn Onj = σ 2

i δij (2)

with δij the Kronecker delta, and σ 2
1 � σ 2

2 . Thus, θ = 0 for
an ellipse with its major axis along the x1 direction.

The local scalar order parameter η at coordinate �x and
time t was computed in the following manner. Each particle k

was assigned an unnormalized Gaussian density

ρk(�x) = exp

(
− (�x − 〈�x〉k)2

2ζ 2

)
(3)

with ζ = 1.5 μm. Using this density, we define the local order
parameter

η(�x) =
(∑

k cos(2θk) ρk(�x)∑
k ρk(�x)

)2

+

(∑
k sin(2θk) ρk(�x)∑

k ρk(�x)

)2

.

(4)

Note that 0 � η � 1, where η ≈ 0 in the disordered state
(randomly oriented cells) and η ≈ 1 in the ordered state
(perfectly aligned cells).

Figure 1 shows a series of snapshots of the cell colony
inside a rectangular 100× 90 μm2 trap with one (bottom) side
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Figure 2. Spacetime diagram of the local order parameter η averaged over the width of the trap for the run illustrated by figure 1.

open. The images are superimposed with the grayscale (color
online) distribution of the local orientational order parameter
η(�x). As seen from this sequence, soon after the colony
completely fills the trap, the local order parameter tends to
be lower in the back of the trap. This is clearly confirmed by
the spacetime plot in figure 2 in which the local order parameter
has been averaged over the width of the trap. Interestingly,
this plot shows convective propagation of the order parameter
with the cell flow from the interior toward the open boundary.
We performed a similar analysis for other runs in different
trap geometries, and in all of them we observed the reduction
of nematic order in the interior of the growing cell colony.
Comparison of the bright-field images near the open trap
boundary and the interior reveals a strikingly different structure
of the colony: while near the open boundary the cells continue
to be locally aligned, the nematic order is destroyed in the
back of the trap. In the following sections we argue that this
phenomenon may be interpreted as a result of the buckling
instability of nematically ordered population of cells under
anisotropic loading which is generated by the cell growth.

3. Continuum modeling

3.1. Preliminaries

In this section we neglect the granularity of the cell population
and characterize the cell ‘fluid’ by the continuum field
variables, density ρ(r, t) and velocity v(r, t). Here we
consider a rectangular trap of length Lx and width Ly , with two
open sides at x = ±Lx/2 and two lateral walls at y = ±Ly/2.
The boundary condition σ = 0 is applied at the open trap
sides (x = ±L), where σ is the stress tensor [11]. The
particles experience a friction force, −μv, where μ is the
friction coefficient due to bottom and top walls. For simplicity,
we neglect friction with the side walls of the trap and intra-
cellular friction.

We also assume that when cells are densely packed, the
‘cellular fluid’ is incompressible with unit areal density, so the
continuity with the volumetric exponential growth at the rate
a yields

∇ · v = a. (5)

Since we are interested in the dynamics of initially highly
ordered cell population, we regard the system as a packed
assembly of elastic columns of rods initially oriented along
the x coordinate. Local perturbations can be described by the
displacement field u whose components ux, uy are functions
of x, y and time t.

3.2. Non-growing compressed rods

Before proceeding to the analysis of the system of growing
rods, let us first consider a simpler auxiliary problem of
buckling of perfectly ordered non-growing rods (a = 0)
which are compressed along the x coordinate with constant
compression px . A highly ordered static cell population can
be considered a two-dimensional uniaxial solid which can bend
in the y direction. The corresponding elastic free energy has
the form

Fel = 1

2

∫
dr

[
λxxu

2
xx + λyyu

2
yy + λxyu

2
xy

+ λ1uxxuyy + ξ
(
∂2
xuy

)2]
, (6)

where

uij = 1
2 (∂jui + ∂iuj + ∂iuk∂juk) (7)

is the Eulerian strain tensor (see [11, 12]) and the last term
describes bending elasticity (with the bending constant ξ )
of the cell ‘columns’ (see the supplementary information
available at stacks.iop.org/PhysBio/8/026008/mmedia for the
calculation of ξ for spherocylindrical ‘cells’). The nonlinear
term in equation (7) must be retained for large displacements
compared to the rod diameter. The components of the
stress tensor can be computed by differentiating the elastic
free energy with respect to the strain tensor components,
σij = δF/δuij . In the following we assume that cells have
zero Poisson ratio and drop the term proportional to λ1.

In the unperturbed nematically ordered system there is
only one nonzero component of the strain tensor, uxx =
σxx/λxx = −px/λxx which corresponds to the uniform
compression along the x coordinate, respectively. Now we
add a small additional non-uniform lateral displacement,
ũy(x), assuming that ∂xũy � 1. We first consider the
system unbounded in the y direction, and the perturbation ũy

3
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independent of y. In this case the free energy can be simplified
as

Fel = 1

2

∫
dr

[
λxxu

2
xx + λxyu

2
xy + ξ

(
∂2
x ũy

)2]
, (8)

with the strain tensor

uxx = −px/λxx + 1
2 (∂xũy)

2, uxy = 1
2 (∂xũy + ∂yux). (9)

Substituting (9) into the free energy (8), we obtain

Fel = 1

2

∫
dr

[
p2

x

/
λxx − px(∂xw)2 +

1

4
λxy(∂xw)2 + ξ

(
∂2
xw

)2
]

(10)

(here we introduced the notation w = ũy). Thus, while shear
and bending elasticity (third and fourth terms in the integrand)
increase elastic energy for lateral cell displacements, the
second term reduces it due to the release of the longitudinal
compression energy. For sufficiently large compression px ,
the reduction is greater than the gain of energy, and buckling
instability occurs. This is analogous to the classical Euler
buckling instability [11].

In order to describe the dynamics of buckling we form the
Lagrangian

L = 1

2

∫
dr ẇ2 − Fel (11)

and write down the Euler–Lagrange equation taking into
account the dissipation due to the bottom friction

∂

∂t

(
δL

δẇ

)
− δL

δw
= −δFd

δẇ
(12)

where Fd = μ
∫

dr(ẇ)2/2 is the dissipation function [14]. In
the overdamped limit, we can neglect the kinetic energy in the
Lagrangian and arrive at the equation for w

μ∂tw = (λxy/4 − px)∂
2
xw − ξ∂4

xw. (13)

It is easy to see that for sufficiently strong compression
(p > λxy/4) the system of rods becomes unstable with respect
to sufficiently long-wave perturbations. Indeed, substituting
w(x, t) = w0 exp[st + ikx] in equation (13), we obtain the
dispersion relation

s = μ−1[(px − λxy/4)k2 − ξk4] (14)

which yields the critical wavenumber for the buckling
instability kc = [(px − λxy/4)/ξ ]1/2. Thus, the instability can
only occur in sufficiently long traps with length Lx > 2π/kc.

For a finite-width trap limited by solid side walls at
y = ±Ly one has to impose the boundary condition w = 0 at
y = ±Ly/2 and take into account the dependence of w on y.
A straightforward generalization of the above derivation leads
to the following equation for the local deflection angle:

μ∂tw = (λxy/4 − p)∂2
xw − ξ∂4

xw + λyy∂
2
yw. (15)

The growth rate s for the lowest y-mode, w(x, t) = w0 exp[st+
ikx] cos(πy/Ly) is given by

s = μ−1
[
(p − λxy/4)k2 − ξk4 − π2λyy

/
L2

y

]
. (16)

The growth rate is lowered by the constant π2λyy/L
2
y , and thus

the buckling instability is suppressed in narrow traps, as can
be expected.

3.3. Growing rods

Here we return to the case where the cells are aligned along
the x axis in a rectangular domain Lx × Ly and they are
growing with the rate a and dividing when their size doubles.
In the continuum limit, the cell ‘medium’ is expanding
along x with the rate a, which due to mass conservation,
equation (5), corresponds to the x-component of velocity
vx = ax. In the first approximation the effect of this expansion
flow can be captured by adding the convective term vx∂xw

to the left-hand side of equation (13). Furthermore, the
compression σxx now is not externally imposed but is internally
generated by the cell growth. Since in the overdamped limit
vx = −μ−1∂xpx , one deduces px = 1

2μa(x2 − L2
x/4), where

the condition px(±Lx/2) = 0 has been used. Substituting this
pressure, we obtain

∂tw + ax∂xw = −
[a

2

(
L2

x

/
4 − x2

) − λxy/4μ
]
∂2
xw − ξ

μ
∂4
xw

(17)

(here we again consider an infinite domain in the y direction,
Ly → ∞).

This equation has to be augmented by the boundary
conditions at x = ±Lx/2. In analogy to the beam equations,
the absence of stress and torque near the free boundaries
leads to the boundary conditions ∂xxw = 0, ∂3

xw = 0. Now
we can look for exponentially growing solutions in the form
w = exp(st)f (x). Using rescaled variables 16tξ/μL4

x → t

and 2x/Lx → x, we obtain the eigenvalue problem

sw = −a∗xw′ − a∗
2

(1 − x2)w′′ − w′′′′,

w′′(±1) = w′′′(±1) = 0
(18)

with one non-dimensional parameter a∗ = aμL4
x

/
16ξ . It

is easy to show that in the limit a∗ → 0, all eigenvalues sn

are negative. However, for a finite a∗ eigenvalues can cross
zero, which would signify the onset of buckling instability.
It is straightforward to compute eigenmodes and eigenvalues
numerically by continuation from a∗ = 0 to finite a∗ using
Maple continuation routine (Waterloo Maple, Inc.). Figure 3
shows the first five eigenvalues s1, . . . , s5 of odd (wo

n(x) =
−wo

n(−x)) and even
(
we

n(x) = we
n(−x)

)
modes as a function

of a∗ and an example of lowest unstable eigenmodes w
e,o
1 (x)

for a∗ = 2500. In the original non-rescaled variables, for odd
modes the buckling bifurcation occurs at aμL4

x/16ξ ≈ 63
and for even modes at aμL4

x/16ξ ≈ 62, i.e. for sufficiently
large growth rate a or system size L, or friction μ. As seen in
figure 3(b), the eigenmodes are large in the middle of the trap
and become very small near the open ends, which indicates
that unstable perturbations are mostly confined to the interior
of the trap, where growth-generated pressure is sufficiently
high. This agrees well with our experimental findings as
well as with discrete-element simulation described in the next
section.

Similarly to the case of non-growing rods above, the
finite transversal width of the trap reduces the eigenvalues
by the fixed value π2λyy/4L2

y , see equation (16), whereby
increasing the threshold growth rate (or longitudinal system
size) necessary for the onset of the buckling instability.
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(a) (b)

Figure 3. (a) First five eigenvalues corresponding to odd (dashed) and even (solid) modes of equation (17) as functions of a∗. (b) Two
fastest growing eigenmodes (even we

0(x) and odd wo
0(x)) for a∗ = 2500 corresponding to almost identical positive (unstable) eigenvalues

s0 = 3.4737 . . . × 105.

4. Discrete-element simulations

To further investigate the nature of the buckling instability
and gain insight in the asymptotic regime which emerges
after the buckling instability develops, we performed discrete-
element soft-particle simulations of a quasi-two-dimensional
monolayer of growing and dividing cells. The numerical
algorithm for these simulations has been described previously
[6, 7]. Each cell is represented by a spherocylinder with
fixed diameter d and variable length l that grows exponentially
until it reaches a certain critical length ldiv at which the
cell is replaced by two collinear cells of equal length ldiv/2.
The critical length ldiv is chosen randomly at the birth of
the cell from a distribution centered at a certain l0 to avoid
spurious synchronization of cell divisions across population.
It is possible to establish a connection between microscopic
parameters of the spherocylinders and the rheological
parameters used in continuum description of the previous
section (see the supplementary information available at
stacks.iop.org/PhysBio/8/026008/mmedia); however, certain
details of the simulations related to the granularity of the
medium evidently cannot be adequately captured by the
continuum theory. The normal and tangential (frictional)
forces moving the cells are computed based on the overlap
of virtual soft spheres centered at the nearest points on the
axes of interacting spherocylinders. These contact forces and
‘bottom friction’ force between cells and the substrate are then
used to compute the motion of cells by integrating Newton’s
equations. As soon as the cell center of mass crosses one
of the open boundaries, the cell is removed from the pool.
The microscopic parameters characterizing the elastic and
dissipative properties of the cells coincide (unless indicated)
with the ones used in [6, 7].

We performed simulations for two types of geometries:
‘open traps’ with two solid side walls at y = 0, Ly and two
open boundaries at x = 0, Lx and ‘side traps’ with three solid

walls at y = 0, Ly and x = Lx and only one open boundary
at x = Lx , similar to the experimental realization shown in
figure 1. We carried out simulations with different cell aspect
ratios A = l0/d and system sizes Lx,Ly .

A typical ‘open trap’ simulation for rods with the mean
aspect ratio at division A = 6 is illustrated by figure 4 (see
also movie 3 in the supplementary information available at
stacks.iop.org/PhysBio/8/026008/mmedia). Panel (a) shows
the state of the colony at t = 19.5 (just before the friction
is switched on at t = 20) when the colony shows a long-
range nematic order. Panel (b) illustrates the disordered state
after the bottom friction has been turned on (t = 20.5), and
finally, panel (c) shows the partial re-establishment of order
later at t = 30. Interestingly, in the nematically disordered
regime, within the clusters cells are highly correlated in their
position, so there is a certain evidence of a smectic order
which is absent in the orientationally ordered quasi-nematic
regime of figure 4(a). We can characterize the degree of
orientational ordering along the x-axis by the scalar order
parameter η = [〈sin 2φ〉2 + 〈cos 2φ〉2]1/2. The spacetime
dependence of η in this run is shown in figure 4(d). As seen
from this figure, as soon as the friction constant is turned on,
the order parameter rapidly decreases in the middle of the
trap, but then it gradually increases again. The origin of this
re-ordering can be understood in the following way. Buckling
instability evidently leads to more dense lateral packing of
the cells (instead of 53 cellular columns across the domain
before buckling, the system stabilizes at 70 columns after
buckling). Thus, the lateral elastic modulus λyy , which is
proportional to the number of cell per unit length along y,
increases and that, as we have seen in the previous section,
leads to the increase of the threshold for buckling instability.
Even stronger buckling behavior is observed for smaller
aspect ratios of the rods (see the supplementary information
available at stacks.iop.org/PhysBio/8/026008/mmedia where
similar results for A = 4 are presented).
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Figure 4. (a–c) Three still frames from a simulation of a growing colony in a 40 × 80 open trap at times (a) t = 19.5, (b) t = 20.5,
(c) t = 30. The growth rate a = 0.71, maximum aspect ratio of cells A = 6 and the bottom friction μ = 10 were turned on at t = 20.
Coloring of the rods indicates rod’s angle with respect to the x-axis: green φ = 0, red φ = ±π/2. (d) Spacetime diagram of the magnitude
of the order parameter averaged over the y dimension for the simulation exemplified in figure 4.
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coordinate) from simulations of a growing colony in a 40 × 80 side trap: (a, c) x-dependent mean cell size (c = 0.5); (b, d) x-independent
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In order to make a more direct connection with
experiments, we also carried out simulations in a side-
trap geometry, in which we also took into account the
effect of nutrient depletion away from the open side of the
trap. As observed experimentally, this depletion leads to
slowing the cell growth and the reduction of the average
cell size. We modeled this effect by the linear dependence
of l0 and the growth rate a on x: {l0, a} = {

l0
0 , a

0
}
(1 −

cx/Lx). We typically used c = 0.5 which indicates 50%
reduction of cell growth near the back wall. We started
simulations with a prepared nematic state in which all cells
are densely packed and parallel to the x-axis. We also
used a constant time-independent bottom friction coefficient
μ = 13.5. We observe that soon after the start of the
run, buckling in the back of the trap occurs and, unlike the
open-trap case, it appears to be persistent (see figures 5(a)
and (c), and movie 5 in the supplementary information
available at stacks.iop.org/PhysBio/8/026008/mmedia). In
agreement with the experiment, the buckling instability
originates near the back wall; however, the patches of
disordered rods are then carried to the open boundary by
the flow. As the cells move toward the open boundary, the
disorder gradually decays, and the order parameter increases,
as seen in figure 5(c). The size reduction in the back of the
trap strongly contributes to the tendency of cells to buckle.
To see this, we ran simulations with the same parameters
except for c = 0, which corresponds to the uniform mean
cell size. The effect of the cell size gradient can be clearly
seen from comparing figures 5(a) and (b) and 5(c) and (d) (see
also movie 6 in the supplementary information available at
stacks.iop.org/PhysBio/8/026008/mmedia). In the latter case,
a near-perfect nematic order is maintained for a long time and
is only eventually broken by a rare fluctuation. The buckling is
noticeably weaker; however, once it sets in, it also appears to
be persistent. Unlike the variable size case, it mostly originates
right at the back of the trap, where some rods eventually
become parallel to the back wall and are forced to buckle
because of the finite width of the trap. Since the x-component
of the mean velocity near the back wall is zero, these rods
linger near the back wall and serve as persistent sources of
disorder which then propagates downstream toward the open
boundary.

5. Concluding remarks

Bacteria in natural habitats typically move by rotating
their flagellae and have developed complex biochemical
mechanisms regulating their motion and collective behavior.
However, in close proximity, such as in biofilms,
bacteria usually lose their flagellae and become non-motile.
Nevertheless, there are certain other physical mechanisms by
which they interact and form multi-cellular structures. As
we have shown earlier, the rod-like shape of many bacteria
may lead to the establishment of local orientational order
in bacterial colonies which is mediated by their growth and
division. In this paper we described the buckling instability

which limits the orientational order in sufficiently large
bacterial colonies. We observed this effect in experiments
with growing non-motile bacteria E. coli in large microfluidic
traps and confirmed it in corresponding DES simulations. We
also developed a continuum theory of the buckling instability
based on the nematodynamic equations. The mechanism
of the instability is related to the anisotropy of the stress
tensor which builds up within the ordered growing colony.
For a sufficiently strong anisotropy, the variations of the
orientational order parameter (or simply orientation angle)
begin to grow. In the limit of very small bending elasticity of
the columns of rods, the growth rate of the instability increases
with the wavenumber, and the instability leads to buckling at
the smallest length scale which corresponds to the cell size.
This buckling instability is a two-dimensional analog of the
classical Euler instability of one-dimensional flexible rods
under compression. We expect that the buckling instability
may strongly affect the structure of bacterial populations
in confined environments (such as surface-bound biofilms),
if significant internal stresses develop there due to the cell
growth. It may also affect the tissue growth and structure in
multicellular organisms [3, 15].
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