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Assessing chemotherapy dosing
strategies in a spatial cell
culture model

Dhruba Deb1†, Shu Zhu1†, Michael J. LeBlanc1

and Tal Danino1,2,3*

1Department of Biomedical Engineering, Columbia University, New York, NY, United States, 2Data
Science Institute, Columbia University, New York, NY, United States, 3Herbert Irving Comprehensive
Cancer Center, Columbia University, New York, NY, United States
Predicting patient responses to chemotherapy regimens is a major challenge in

cancer treatment. Experimental model systems coupled with quantitative

mathematical models to calculate optimal dose and frequency of drugs can

enable improved chemotherapy regimens. Here we developed a simple

approach to track two-dimensional cell colonies composed of chemo-

sensitive and resistant cell populations via fluorescence microscopy and

coupled this to computational model predictions. Specifically, we first

developed multiple 4T1 breast cancer cell lines resistant to varying

concentrations of doxorubicin, and demonstrated how heterogeneous

populations expand in a two-dimensional colony. We subjected cell

populations to varied dose and frequency of chemotherapy and measured

colony growth. We then built a mathematical model to describe the dynamics

of both chemosensitive and chemoresistant populations, where we

determined which number of doses can produce the smallest tumor size

based on parameters in the system. Finally, using an in vitro model we

demonstrated multiple doses can decrease overall colony growth as

compared to a single dose at the same total dose. In the future, this system

can be adapted to optimize dosing strategies in the setting of heterogeneous

cell types or patient derived cells with varied chemoresistance.

KEYWORDS
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Introduction

Chemotherapy dosing strategies have primarily followed a maximum tolerated

dosage (MTD) approach, in which patients are given high doses of chemotherapy to

kill as many tumor cells as possible (1–5). This approach is based on early assumptions

that tumors are composed of a homogenous, exponentially growing cell population and
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thus maximum doses are likely to cause the highest disease

eradication (6, 7). However, tumors are composed of genetically

heterogeneous cells with varied chemoresistance, and further

diversity in chemoresistance can arise due to drug selection

pressure from traditional high dose treatments (8–10). Thus,

while eradicating chemosensitive cells, the MTD approach can

lead to faster growth of chemoresistant cell populations, leading

to faster relapse and eventually worse outcomes (11).

Furthermore, due to the severity of side-effects at high doses,

administration of chemotherapy using the MTD approach is

typically separated by timescales as large as weeks to allow

normal tissue to recover (12). In contrast to MTD,

metronomic chemotherapy (MCT) (13, 14) , where

chemotherapy is delivered at lower doses more frequently, has

been explored and demonstrated in some cases to be a more

optimal dosing strategy in terms of both measures of efficacy and

resistance development (15–18).

Since chemotherapeutic dosing schedules are often

determined empirically in clinical trials, the discovery of

optimal dosing strategies such as MCT for individual drugs

has been limited. Several in silico studies coupled with in vitro

assays have demonstrated that intra-tumor heterogeneity and

dosing strategy can affect tumor response to chemotherapy (9,

15, 19, 20). However, in vitro drug efficacy assays are typically

performed on homogenous, chemosensitive tumor cells, which

fail to incorporate tumor spatial heterogeneity and thus are not

ideal for investigating the spatial competition and dynamic

interaction between drug sensitive and resistant cell

subpopulations in response to chemotherapy. Inevitably these

models are not predictive of drug efficacy or dosing schedules,

particularly in patients who have developed drug resistance from

previous treatments (6, 21). In order to recapitulate the

complexity of the tumor microenvironment, three-dimensional

(3D) multicellular spheroid and organoid models have been

employed to incorporate transport dynamics and intricate cell-

cell interactions that are naturally presented in vivo (20, 22–24).

However, it can be challenging to incorporate clonal

heterogeneity in a spatially-controlled manner or visually track

resistant clone trajectories in 3D cell culture models. The effects

observed in 2D models may not necessarily be consistent with

those in 3D models and depend on the correlation varies based

on cell/cancer type. Therefore, simplified model systems in 2D

can enable the development of initial hypotheses that should

then be used in concert with additional assays.

Here we use a 2D culture model to track dynamics of chemo-

sensitive and resistant cell populations in a growing colony. The

colony expansion can be tracked for at least three weeks in

standard tissue culture wells, making long-term analysis of

chemotherapy dosing schedules possible. We use this system

to control parameters including the initial resistant cell

proportion as well as dose and frequency of drug delivered.

We then build a simple mathematical model and study the effect

of various chemotherapy dose and frequencies on colony
Frontiers in Oncology 02
growth. Finally, we validate the findings of the mathematical

model in an in vitro model.
Materials and methods

Development of chemoresistant breast
cancer cell lines

The mouse triple negative breast cancer cell line 4T1 was

obtained from ATCC (RRID : CVCL_0125) and was cultured in

RPMI cell culture medium (RPMI 1640, Thermo Fisher, MA)

supplemented with 10% fetal bovine serum (Thermo Fisher,

MA) and penicillin-streptomycin (100 IU/ml). Cultured cells

were maintained in a controlled humidified atmosphere of 5%

CO2 in air at 37°C. Cells were subcultured every 3-4 days when

reached over 80% confluency. Drug sensitivity of wild type cells

were evaluated using a colorimetric cell proliferation assay

(MTT assay, V13154, Thermo Fisher, MA) and a dose-

response curve was constructed by culturing cells and

evaluating cell viability in the presence of various

chemotherapy drug concentrations. In order to establish

chemoresistant cell lines, wild type cells were initially cultured

in the presence of a very low concentration of chemotherapeutic

drug (approximately 5% of IC50). Cell medium was replaced

every 2-3 days until 75-80% confluency was reached. Cells were

subsequently detached and subcultured and the viability of

collected cells was evaluated using trypan blue staining. Drug

concentration in the subcultured cells was doubled when over

90% of collected cells were viable. Otherwise, cells were

subcultured and maintained at the same concentration for

additional 1-2 passages until desired viability was achieved.

Cell drug sensitivities were evaluated at each passage using

MTT assay and cells with selected drug resistance were

cryopreserved. In the present work, the resistance level of cells

is defined as the highest chemotherapy concentration the cells

were exposed to while being cultured. For example, the label

4T1-Dox [50 nM] means 4T1 cells that are able to replicate and

grow in the presence of 50 nM doxorubicin (Sigma-Aldrich,

MO) and the viability of cells at confluency are over 90%.
2D radial growth cell culture model

Cryopreserved cells with desired chemoresistance were

thawed and cultured in the presence of chemotherapeutic drug

with matched concentration for at least 2 passages prior to 2D

radial growth experiments for cells to reach stable growth state.

Harvested cells were then resuspended in cell culture medium

with a density of 1x106 cells/mL. Single drops of 20 mL cell

suspension were subsequently seeded in the center of each well

on a surface treated 12-well plate. Significant spreading of the

drop was not observed due to the hydrophobicity of treated well
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plate surface. Cells were allowed to settle for 24 hours under

normal culture condition (5% CO2 in humidified air, 37°C)

followed by a gentle PBS wash to remove dead or loosely

attached cells. Fresh medium was then added to cover the

whole well. At this point, a single colony of cells should have

already appeared in the center of each well, the diameter of the

colony is defined as the initial diameter and can be adjusted by

varying the combination of seeding drop volume and seeding

cell density. The seeded colonies would start expanding radially

once the plates were returned to standard culture condition.

Gentle PBS wash and refill of fresh medium was done every 24

hours (Figure 1, case I).

The cell seeding procedure can be modified to incorporate

spatial heterogeneity in drug resistance across the colony. Single

drops of 20 mL wild type 4T1 cell suspension (1x106 cells/mL)

were first seeded in the center of each well. Using a 10 mL pipette

tip, a 5 mL drop of resistant cell suspension (1x106 cells/mL) was

gently added into the center of each seeded big drop without

disturbing the big drop. The tip was inserted into the big drop

vertically and the resistant cell suspension was slowly injected

right above the bottom of the well. Cells were allowed to settle

for 24 hours before a PBS wash. Fresh medium was subsequently

added to fill the whole well to initiate colony expansion. The tip

can be inserted into the center or near the edge of the drop and

the resulted resistant subcolony will be observed at the

corresponding location within the big colony (Figure 1, case
Frontiers in Oncology 03
II). The volume of added resistant cell suspension defines the

size of resistant subcolony. It is also possible to incorporate

multiple resistant clones by adding more drops of resistant cell

suspension. In the case of coculturing chemosensitive and

chemoresistant cells, 4T1-Citrine (fluorescent wild type 4T1

cells) were used to differentiate different cell populations.
MTT assay

Cell viability assays were done according to manufacturer’s

instructions (V13154, Thermo Fisher, MA). Briefly, cells were

seeded on a 96-well plate with 100 mL of cell suspension with

density of 6000 cells/well and the plate was incubated under

normal cell culture condition for 24 hours leading to 50 – 60%

confluence. 10 mL of MTT reagent was added into each well. The

well plate was immediately returned to cell culture incubator and

was incubated for another 3-4 hours until visible purple

precipitations show up at the bottom. Another 100 mL of

detergent reagent was then added to dissolve the purple

precipitations. OD measurement of the well plate was done at

570 nm wavelength using a Tecan microplate reader (Thermo

Fisher, MA) and the background for each well was measured at

690 nm wavelength and was subtracted from the readings. Wells

with wild-type cells were controls and each condition was tested

in at least triplicate wells.
FIGURE 1

Schematic of 2D spatial colony system. (top, case I) Chemosensitive 4T1 cells are seeded in a well plate and grow radially, where colony radius
and cell fluorescence are tracked over time. (bottom, case II) A mixture of chemosensitive and chemoresistant cells are premixed or spotted
sequentially to establish a spatial competition model between cell populations.
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Image analysis

Each well was imaged using an EVOS FL Auto 2 Cell Imaging

System (Thermo Fisher, MA) at desired time points. The scope and

accessories were programmed using the Celleste Imaging Analysis

software (Thermo Fisher, MA). Customized MATLAB code was

used stitch subplot and generate images of each entire colony.

Images were analyzed using Image J (NIH). Outlines of each colony

were traced manually in ImageJ. Area measurements were used to

calculate colony diameter assuming each colony is a perfect circle.

To calculate the fraction of resistant cells in ImageJ, first, the

background was removed by setting a pixel threshold. Next, the

area occupied by the cells was calculated using the circle and analyze

function in ImageJ. As all cells’ nuclei were stained with Hoechst

stain (Invitrogen™ NucBlue™ Live ReadyProbes™ ,

ThermoFisher, MA), and all wildtype cells were transduced to

express Citrine (25), the fraction of resistant cells were obtained

from the values of (Hoechst – Citrine)/Hoechst. The same

background threshold was maintained for all images.
Statistical analysis

In all in vitro assays, number of replicates were n = 3 or 4,

and the standard error is calculated with standard deviation

divided by the square root of n. Statistical significance was

calculated by two-tailed, paired t-test while comparing two

populations and was calculated by ANOVA with two-factor

and replication comparing three or more populations.
Results

Doxorubicin-resistant 4T1 breast cancer
cells in the 2D co-culture system dictate
the overall response to doxorubicin
treatment

MTT analysis confirmed that gradually increasing

chemotherapy concentration in cell culture leads to the

generation of 4T1 chemoresistant cell lines with different level of

chemoresistance (Figure 2A). While the IC50 of wild type 4T1 cells

was about 2 mM, the three representative resistant cell lines we

created were able to maintain viability at much higher drug

concentrations. For 4T1-Dox [4 mM], 4T1 cells that were cultured

in the presence of 4 mM of Dox, we observed minimal to no

reduction in cell viability even at 100 mM, which was the highest

concentration tested due to the limited drug solubility.

We next assessed the effect of initial cell density on the

growth of the colonies over time. Specifically, maintaining the

seeded drop volume constant at 20 mL, increasing seeded cell

number (all sensitive cells) from 10K to 50K resulted in an over

2x increase in initial colony diameter (Figure 2B). However, the
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colony expansion rates indicated by the change in colony

diameter within a fixed time period (slope of the growth

curves) were similar despite the difference in initial colony

diameter. Reduction in serum level impeded colony expansion,

however, where a 10x reduction in serum level was required to

achieve a significant reduction in colony growth rate

(Supplementary Figure S1). 4T1-Dox [50 nM] (which grow at

50 nM doxorubicin) colonies had a slower growth rate than the

4T1-Wt colonies and the 4T1-Dox [800nM] (which grow at 800

nM doxorubicin) colonies were the slowest.

During later cycles of chemotherapy in patients, intratumor

heterogeneity is common and sensitive and resistant cells often

co-exist (26). Hence, we hypothesized that our model system

could be used to test the overall tumor response to

chemotherapy. Here, we seeded single 20mL drops of mixed

populations of 4T1 wild type and 4T1 resistant cells (total 1x106

cells/mL) of total ~20k cells per colony. Mixing resistant and

sensitive cells and seeding mixed cells lead to the formation of

colonies with both cell populations and resistant cells were

evenly scattered across the entire colony. To mimic the

clinically relevant level and range of resistance (27), we chose

to utilize cells with lower resistance levels (<1 mM) for our

characterization. For colonies with cells that were less resistant

(4T1-Dox [50 nM]), increasing the initial proportion of resistant

cells had minimal impact on colony expansion in the absence of

any doxorubicin treatment (Figure 2C). For all tested conditions,

doxorubicin treatment had minimal impact on colony

expansion during the initial stage while the reduction in

colony expansion was more pronounced during later time

points (Figures 2C–F). Mixed colonies of cells were able to

grow while varying the inoculation location, percentage of FBS

in the media and the fraction of resistant cells compared to that

of the sensitive cells (Supplementary Figures S2–S5). Taken

together, our data suggests that presence of doxorubicin

resistant 4T1 cells along with sensitive cells can alter the

overall response to doxorubicin in our model and this

response varies based on the dose and time of the treatment.
2D co-culture system can be optimized
to identify a critical drug concentration
and to screen for various treatment
regimens

In order to differentiate the response of sensitive and resistant

cells we transduced the 4T1 wildtype cells to express Citrine

fluorescent marker (25). Citrine labelled 4T1 cells retained their

response to Doxorubicin similar to that of 4T1 wildtype cells

(Supplementary Figure S6). Hoechst staining of each colony was

carried out at the final time point. In the end, the whole cell

population stains with Hoechst while only the sensitive wildtype

cells show the Citrine signal. Hence, cells that were Hoechst-

positive, but Citrine-negative were identified as the resistant cells.
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https://doi.org/10.3389/fonc.2022.980770
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Deb et al. 10.3389/fonc.2022.980770
By measuring the occupied area of each cell population, we found

high drug doses caused more reduction in final size of the colony

but at a price of increased proportion of resistant cells in the colony

(Figure 3). The drug concentration that led to a colony composition

of equal amount of chemoresistant and chemosensitive cells can be

considered as a “critical concentration”. Both the initial proportion

of resistant cells as well as their level of resistance determined this

critical concentration and it was much lower when majority of

seeded cells were chemoresistant. Interestingly, when 4T1-Dox [50

nM] cells were seeded with lower or equal number of 4T1-WT cells,

after critical concentration, the fraction of resistant cells decreased

along with the decrease in total colony radius as a response to high

concentration of Doxorubicin.
A mathematical model based on the
behavior and parameters of the 2D co-
culture system can be used to predict
cumulative chemotherapy regimens to
attain the lowest volume of tumor

To quantitatively understand the dynamics of chemosensitive

and chemoresistant cells subject to different dosing strategies, we
Frontiers in Oncology 05
built a mathematical model. In this model, chemosensitive (Ns)

and chemoresistant (Nr) cells are initially mixed at a given ratio

and then assumed to exponentially grow at rates ms and mr,
respectively (Figure 4A). To subject cells to chemotherapy, we

used our experimentally determined doxorubicin dose-response

viability curve for wildtype and resistant 4T1 cells (Figure 2A). We

assumed that resistant cells were not affected by chemotherapy at

the tested doses, such as in the 4T1 (Dox 3uM) cell line we created

experimentally. Thus, cells after a given interval of time would

have the population level

N = V(x)*e
a

where V(x) is the viability value for cells at a particular dose x,

and a is the growth rate (a scaled time interval of t=1 is assumed

here for simplicity). In the case of multiple doses, each dose is

fractionated across a smaller interval, but repeated for multiple

intervals, keeping the same total time interval as the single dose.

Thus, the population level following multiple doses (n) is

N = V(   x=n   )n*e
a

(Supplemental material).

We first simulated the model and varied the number of

resistant cells Nr from 100-105, while keeping the number of
A

B D

E

F

C

FIGURE 2

Generation and characterization of doxorubicin-resistant 4T1 cells in a 2D model system (A) Viability of chemosensitive or Dox-resistant 4T1
cells across varied Doxorubicin added to culture determined by MTT assay. Error bars represent standard deviation for 3 replicates. (B) Radial
growth of chemosensitive and Dox-resistant colonies as a function of time for various seeding densities. (C) Colony radius normalized to
starting radius in a 1:1 seeded mixture of sensitive and 50nM Dox resistant cells in the presence of 0 nM, 25 nM, 50 nM or 500 nM doxorubicin.
(D) Colony radius normalized to starting radius in a 1:1 seeded mixture of sensitive and 800nM Dox resistant cells in the presence of 0 nM, 100
nM, 800 nM or 2 µM doxorubicin. (E, F) Stitched 4X brightfield images demonstrating size of colony and morphology across various seeding and
chemotherapy conditions in (C, D), respectively. Scale bar = 1000 µm. Number of replicates, n = 3, and the standard error is calculated with
standard deviation divided by the square root of n.
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chemosensitive cells at 5x104. As expected, we observed that the

total number of chemosensitive cells was reduced with increased

dose, while the amount of chemoresistant cells was not affected

by chemotherapy dose (Figure 4B). We next calculated the

fraction of resistant cells across multiple doses and initial

conditions (Figure 4C). For high doses, such as in a maximum

tolerated dose (MTD) approach, resistant populations eventually

dominate the cell population as previously noted. Next, we set

sensitive and resistant cells at a 1:1 initial ratio and set the

growth rate of resistant cells as 20% of sensitive cells, as

measured from data in Figure 2C. We found that when
Frontiers in Oncology 06
varying the number of doses applied, the fraction of resistant

cells and total cell number as compared to a single dose (defined

here as the “gain”) was a function of the initial starting dose of

chemotherapy used (Figure 4D). At concentration ranges of ~1 -

10nM of chemotherapy resulted in populations with a lower

fraction of resistant cells when comparing multiple doses to a

single dose. In turn, multiple doses also resulted in larger total

cell populations. However, at higher concentration ranges of

more than ~10nM, the relationship was reversed. Higher levels

of chemotherapy with multiple doses led to an increased fraction

of resistant cells and smaller total cell number. As expected, the
A B

D E F

G

C

FIGURE 3

Relationship between overall 2D tumor colony size and treatment efficacy. (A–C) Normalized radius (black) and Area fraction of resistant cells
(red) for mixtures of chemosensitive 4T1 and 50 nM 4T1-Dox resistant cells at varied ratios. (D–F) Normalized radius (black) and Area fraction of
resistant cells (red) for mixtures of chemosensitive 4T1 and 800 nM 4T1-Dox resistant cells at varied ratios. The fraction of resistant cells was
calculated from area of the mixed colonies occupied where all cells were stained with Hoechst and doxorubicin-sensitive cells expressing
Citrine. Resistant fractions = (Hoechst – Citrine)/Hoechst. (G) Stitched 4X fluorescent images of colonies demonstrating the distribution of
chemosensitive cells (4T1-WT, Citrine) in each colony (Hoechst) in the presence of doxorubicin. Colonies were formed by seeding 1:1 mixture
of 4T1-WT and 50 nM resistant cells (top, corresponding to (B) or 1:1 mixture of 4T1-WT and 800 nM resistant cells (bottom, corresponding to
(E). Scale bar = 1000 mm. Number of replicates, n = 3 or 4, and the standard error is calculated with standard deviation divided by the square
root of n.
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relationship between increasing resistant cell fraction and

smaller total cell number was inversely proportional, such that

there was no particular number of doses or starting dose that

would allow for beneficial optimization of both measures.

We next tested if we could simulate the collateral effect of

chemotherapeutic agents. To address this, we used our model to

simulate the effects of multiple doses on healthy human

mammary epithelial cells (HMEC). We extracted an IC50 for

the HMEC line from a previously conducted study (28), which

reported EC50 = 0.052 mM for Doxorubicin. This value is

approximately 60-fold lower in terms of the EC50 of our 4T1

cell line (EC50 = 3.2 mM). We observed an approximate ~20%

difference between single and multiple doses in terms of number

of cells (Supplementary Figure S7, top panel). Interestingly only

minor differences were shown between 2-5 doses. In this same

regimen, we noted more than 2-fold reduction in tumor size

(bottom panel). Thus, our model can simulate the trade-off in

terms of tumor growth and collateral effects.
Frontiers in Oncology 07
In summary, based on the kinetics of our 2D model system,

this simplified mathematical model can predict a critical

concentration of drug and a schedule of treatment to achieve

the smallest cell populations, the lowest proportion of resistant

cells, or in between points that balance the trade-off between

these outcomes.
2D co-culture system can test the
therapeutic benefit of multiple dosing
compared to single dose

As our mathematical model suggested therapeutic benefit

with small tumor sizes under multiple dosing, we investigated

whether the schedule of drug treatment may alter the treatment

efficacy in our in vitro 2D model. In order to study the effect of

multi-dosage schedule on colony expansion, we first seeded 4T1-

WT cells and treated the colony with 2 different chemotherapy
A
B

D

C

FIGURE 4

Mathematical model of chemosensitive and chemoresistant populations. (A) (left) Schematic of the underlying system modeled, whereby
resistant (Nr) and sensitive (Ns) cell populations grow exponentially, and are then subject to chemotherapy regimens of varying frequency and
dosage. (right) Viability of chemosensitive cells in response to doxorubicin. Data was fit to a Hill function with hill coefficient = 2, and EC50 =
3.2 mM. (B) Total sensitive cells and total resistant cells at the end of interval as a function of starting dosage. Colors indicate varied initial
conditions of Nr = 100, 101, 102, 103, 104, where Ns = 5x104. (C) Fraction of resistant cells as a function of starting dosage for varied initial
conditions. (D) For a 1:1 mixture of Ns to Nr, number of doses is varied. The fraction resistant, total cell population are plotted on the top row.
The ratio of a particular number of doses to 1 dose is termed the “Gain”, both for fraction resistant and total cell population. The arrow at
bottom panel shows the chemotherapy dose range where multiple doses show lower number of total cells over single dose.
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dosing schedules. Specifically, we varied the drug concentration

and the frequency of treatment per week. For example, to reach a

cumulative dose of 600 nM, we utilized 1 dose of 600 nM, 2 doses

of 300nM or 3 doses of 200nM of doxorubicin. In this way, a

cumulative treatment of 600 nM per week was achieved in each

scenario. Gentle PBS wash was done several times after each dose

to remove waste in culture and fresh media with drug was then

added for the next dose. We found that when holding the

cumulative amount of doxorubicin constant, colony expansion

kinetics were not affected by altered dosing schedule for the 4T1

wildtype colonies (Supplementary Figure S8). Next, we tested the

colony expansion kinetics under varying dosage schedule for

mixed colonies of 4T1-Dox [800nM] and 4T1-WT seeded with a

1:2 ratio. We chose this ratio to mimic a clinical situation of

onset of resistance with fewer number of resistant cells than that

of sensitive cells. We chose to achieve a cumulative dose of 2 mM
that we tested previously in this ratio of mixed colonies

(Figure 3D). Interestingly, we observed decreased overall

colony radius with increase in the number of doses

(Figure 5A). While there was no significant improvement from

2 doses to 3 doses, we noticed significant reduction (p<0.003, 2-

way ANOVA) in normalized colony radius from one dose to

multiple doses. We also noticed increase in the resistant cells’

fractions with the increase in dosing numbers at the final time

point (142 hours) (Figure 5B), a trend also observed in our

mathematical model (Figure 4D, top panel). Taken together, our

model system can be utilized to identify a lower but effective
Frontiers in Oncology 08
drug concentration and can be utilized to test which metronomic

treatment regimens provide anti-proliferative benefit.
Discussion

Several clinical trials in the past have shown that the

maximum tolerated dose (MTD) approach has not always

provided maximum clinical benefits. For example, Cisplatin, a

common chemotherapy administered in non-small cell lung

cancer patients, failed to show any clinical benefit in terms of

overall survival or pathological complete response over relatively

moderate doses in a randomized multicenter trial (29).

Furthermore, retrospective analyses on low dose metronomic

chemotherapy, with frequent schedules proved to be clinically

favorable and safer compared to conventional chemotherapy for

a large number of drugs in a broad range of tumors (30). In our

2D co-culture system of doxorubicin-sensitive and resistant 4T1

cells, we observed that a cumulative treatment regimen with low

dose administered in frequent interval (metronomic

chemotherapy or MCT) resulted in the smaller size of colonies

as compared with the regimen with a single high dose. This is

due to differences in growth rates and drug responses of

chemoresistant and chemosensitive cells, which enables

optimization with dosing regimens.

In our study, a critical concentration of drug is defined that

leads to a colony composition of equal amount of
A B

FIGURE 5

Cumulative treatment regime and long-term overall efficacy. (A) Normalized colony radius as a function for cumulative doses of 2 mM split into
1-3 administrations (green, grey and yellow arrows). Mixed colonies of 4T1-Dox [800nM] and 4T1-WT were seeded with a 1:2 ratio. Cumulative
dosage for each chemotherapeutic schedule is defined as dosage level (in nM) multiplied by duration of drug treatment (dosing frequency [1/
day] × n days, n = 1, 2 or 3). (B) Area fraction of resistant cells at final timepoint (142 hours) was calculated from area of the mixed colonies
occupied where all cells were stained with Hoechst and doxorubicin-sensitive cells expressing Citrine. Resistant fractions = (Hoechst – Citrine)/
Hoechst. Number of replicates, n = 3, and the standard error is calculated with standard deviation divided by the square root of n. 2-way Anova
was carried out to calculate the significance in panel (A), p value. ** = p<0.01, *** = p<0.003, **** = p< 2 x 10-6. n.s., not significant.
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chemoresistant and chemosensitive cells. Here the initial

proportion of resistant cells as well as their level of resistance

determines this critical concentration. We found the most

clinically beneficial timing for therapeutic intervention is when

the resistant cell population is less resistant and they are present

in lower numbers. Taken together, this 2D co-culture system can

be optimized to identify lowest effective doses based on the

growth kinetics of chemosensitive and chemoresistant cells in

various situations.

The challenges associated with experimentally tracking

growth and response of chemosensitive and chemoresistant

cells in a mixed culture has inspired mathematical modeling of

tumor architectures (31–35). A recent study used an off-lattice

agent-based model and flow-cytometry analysis to show the

benefits of adaptive therapeutic strategies using dose modulation

or treatment vacation in breast cancer patients (19). We took a

simplified approach of building our model based on the dose

response curves of chemosensitive and chemoresistant cells from

the in vitro co-culture. Nonetheless, we were able to identify a

treatment regimen to attain the smallest sized tumor based on

experimental data from an MTT assay that measures ATP

produced by live cells after 4 days of incubation with

doxorubicin. The specific dose regimens may be different in

experiments when normalized colony radius is counted as a

measure of viable cells after 7 days, and this can be addressed if

dose response curves are created for these assays.

Clinical studies reported that breast cancer relapsed due to drug

resistance in 70% of node-positive and 30% of node-negative cases

(36–38). However, when head-to-head comparisons are made

among the patients, the ratio of sensitive vs. resistant cells depend

on the time during which diagnostic tests are conducted during the

treatment schedule. Thus, in our experimental model we studied 3

main scenarios when the fraction of sensitive cells is higher than

that of the resistant cells, vice versa, and when both fractions are

equal. As there could possibly be many ratios that are impractical to

cover experimentally due to the limit of the throughput, this

motivated us to simulate the data for many ratios in our

mathematical model.

Heterogeneity, in terms of intratumor cell types and their

responses to chemotherapy is a limitation to our study. Using

experimental data on dose response curves and cellular growth rates

from various cell types in the tumor microenvironment can enable

introducing additional parameters to measure the benefit of MCT.

In addition, the model also allows us to further optimize it for other

cancer types and other chemotherapy and targeted therapy drugs.

As the 2D co-culture system enables tracking of the growth

dynamics of chemosensitive and chemoresistant cells under simple

epifluorescence microscopy, we can further optimize the system for

high throughput screening purposes to identify optimal

combinatorial therapies and discovery of new treatment strategies

via screening of experimental small molecule libraries (39). The 2D

co-culture system also provides us the control to build various types

of spatial architecture by simply changing the location of initial
Frontiers in Oncology 09
inoculation. Different architectures quickly created by this model

can represent complex patterns of spatial heterogeneity that may

vary from one patient to another. Simplified model systems in 2D

enabled us to develop initial hypotheses of the clinical situations that

would be most beneficial in terms of metronomic therapy dosing

regimens. Previous studies showed that response to small molecule

inhibitors might differ in 2D vs. 3D culture due to difference

in model architecture, drug penetration, or cell type (40, 41). In

practice, the proposed system 2D system can be used in

combination with other assays to account for some of these

differences. As a next step, the model could be adapted to

account for 3D chemotherapeutic responses with additional

parameters, additional cell types, or developed to account for in

vivo tumor growth rates that correlate with preclinical mouse

studies, to eventually develop translatable results to clinical trials.

MCT is currently being studied as a palliative regimen in

patients with metastatic breast cancer with the aim to prolong

and improve quality of life (42). We envision the use of our

model for clinical translation where growth rates and

proportions of chemosensitive and chemoresistant cells can be

measured to optimize dosing regimens. One possible path is

where resistant cells have distinct markers compared to sensitive

cells based on the mechanism of resistance, and in vivo imaging

approaches can quantify their population numbers and growth

rates. Another possibility is to perform ex vivo expansion of

these cell types from patient samples. Then our model could be

adapted to account for pharmacokinetics and in vivo cell growth

rates in tumors, to predict optimal chemotherapeutic regimes.

Taken together, with mathematical modeling, the system

presented here provides an approach to find optimum

therapeutic regimen for heterogenous tumors.
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